10 research outputs found

    Creation of scalar and Dirac particles in the presence of a time varying electric field in an anisotropic Bianchi I universe

    Get PDF
    In this article we compute the density of scalar and Dirac particles created by a cosmological anisotropic Bianchi type I universe in the presence of a time varying electric field. We show that the particle distribution becomes thermal when one neglects the electric interaction.Comment: 8 pages, REVTEX 3.0. to appear in Phys. Rev.

    Improving interinstitutional and intertechnology consistency of pulmonary SBRT by dose prescription to the mean internal target volume dose.

    Get PDF
    Dose, fractionation, normalization and the dose profile inside the target volume vary substantially in pulmonary stereotactic body radiotherapy (SBRT) between different institutions and SBRT technologies. Published planning studies have shown large variations of the mean dose in planning target volume (PTV) and gross tumor volume (GTV) or internal target volume (ITV) when dose prescription is performed to the PTV covering isodose. This planning study investigated whether dose prescription to the mean dose of the ITV improves consistency in pulmonary SBRT dose distributions. This was a multi-institutional planning study by the German Society of Radiation Oncology (DEGRO) working group Radiosurgery and Stereotactic Radiotherapy. CT images and structures of ITV, PTV and all relevant organs at risk (OAR) for two patients with early stage non-small cell lung cancer (NSCLC) were distributed to all participating institutions. Each institute created a treatment plan with the technique commonly used in the institute for lung SBRT. The specified dose fractionation was 3 × 21.5 Gy normalized to the mean ITV dose. Additional dose objectives for target volumes and OAR were provided. In all, 52 plans from 25 institutions were included in this analysis: 8 robotic radiosurgery (RRS), 34 intensity-modulated (MOD), and 10 3D-conformal (3D) radiation therapy plans. The distribution of the mean dose in the PTV did not differ significantly between the two patients (median 56.9 Gy vs 56.6 Gy). There was only a small difference between the techniques, with RRS having the lowest mean PTV dose with a median of 55.9 Gy followed by MOD plans with 56.7 Gy and 3D plans with 57.4 Gy having the highest. For the different organs at risk no significant difference between the techniques could be found. This planning study pointed out that multiparameter dose prescription including normalization on the mean ITV dose in combination with detailed objectives for the PTV and ITV achieve consistent dose distributions for peripheral lung tumors in combination with an ITV concept between different delivery techniques and across institutions

    Challenges for land system science

    No full text
    While considerable progress has been made in understanding land use change, land system science continues to face a number of grand challenges. This paper discusses these challenges with a focus on empirical land system studies, land system modelling and the analysis of future visions of land system change. Contemporary landscapes are contingent outcomes of past and present patterns, processes and decisions. Thus, empirical analysis of past and present land-use change has an important role in providing insights into the socio-economic and ecological processes that shape land use transitions. This is especially important with respect to gradual versus rapid land system dynamics and in understanding changes in land use intensity. Combining the strengths of empirical analysis with multi-scale modelling will lead to new insights into the processes driving land system change. New modelling methods that combine complex systems thinking at a local level with macro-level economic analysis of the land system would reconcile the multi-scale dynamics currently encapsulated in bottom-up and top-down modelling approaches. Developments in land use futures analysis could focus on integrating explorative scenarios that reflect possible outcomes with normative visions that identify desired outcomes. Such an approach would benefit from the broad and in-depth involvement of stakeholders in order to link scientific findings to political and societal decision-making culminating in a set of key choices and consequences. Land system models have an important role in supporting future land use policy, but model outputs require scientific interpretation rather than being presented as predictions. The future of land system science is strongly dependent on the research community's capacity to bring together the elements of research discussed in the paper, via empirical data collection and analysis of observed processes, computer simulation across scale levels and futures analysis of alternative, normative visions through stakeholder engagement

    Search for multimessenger sources of gravitational waves and high-energy neutrinos with Advanced LIGO during its first observing run, ANTARES, and IceCube

    No full text
    Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore