60 research outputs found

    Coastal-trapped waves with finite bottom friction

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 41 (2006): 172-190, doi:10.1016/j.dynatmoce.2006.05.001.Coastal-trapped waves with finite-amplitude bottom friction are explored. “Finite-amplitude” in this context means that the bottom stresses are large enough to change the wave modal structure. The importance of bottom friction is measured by the nondimensional number r/(ωh), where r is a bottom resistance coefficient, ω is the wave frequency and h is the water depth. Increasing bottom drag causes free wave modes to adjust by having their amplitude maxima for alongshore current translate offshore to the point that, with relatively large bottom stress, the alongshore current variance is trapped entirely on the slope, even though pressure variations remain substantial right up to the coast. In conjunction with these adjustments, wave frequency, hence propagation speed, varies and the wave damping is usually less than would be expected based on a weak-friction perturbation calculation. Stronger density stratification increases wave damping, all else being the same. A mean alongshore flow can strongly affect modal structure and wave damping, although general trends are difficult to discern. Results suggest that bottom friction may cause an observed tendency for lower frequency alongshore current fluctuations to become relatively more important with distance offshore.This work was supported by National Science Foundation grant number OCE02-27679

    The coastal Robinson

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 52 (2011): 4-7, doi:10.1016/j.dynatmoce.2011.01.004.Allan Robinson made important contributions to coastal oceanography in at least two major ways. First, in 1964, he introduced continental shelf waves to the nascent coastal oceanography community, and so initiated a very profitable line of research that remained active for two decades. Second, he had the drive and vision to conceive of, and then direct, the first global synthesis of coastal oceanography.This contribution was written under the support of the National Science Foundation, Physical Oceanography grant OCE-0849498

    Statistical properties of near‐surface flow in the California coastal transition zone

    Get PDF
    The article of record as published may be found at https://doi.org/10.1029/91JC01072During the summers of 1987 and 1988, 77 near-surface satellite-tracked drifters were deployed in or near cold filaments near Point Arena, California (39°N), and tracked for up to 6 months as part of the Coastal Transition Zone (CTZ) program. The drifters had large drogues centered at 15 m, and the resulting drifter trajectory data set has been analyzed in terms of its Eulerian and Lagrangian statistics. The CTZ drifter results show that the California Current can be characterized in summer and fall as a meandering coherent jet which on average flows southward to at least 30°N, the southern end of the study domain. From 39°N south to about 33°N, the typical core velocities are of O(50 cm s−1) and the current meanders have alongshore wavelengths of O (300 km) and onshore-offshore amplitude of O(100–200 km). The lateral movement of this jet leads to large eddy kinetic energies and large eddy diffusivities, especially north of 36°N. The initial onshore-offshore component of diffusivity is always greater than the alongshore component in the study domain, but at the southern end, the eddy diffusivity is more isotropic, with scalar single particle diffusivity (Kxx + Kyy) of O(8 × 107 cm2 s−1). The eddy diffusivity increases with increasing eddy energy. Finally, a simple volume budget for the 1988 filament observed near 37°N off Point Arena suggests that subduction can occur in a filament at an average rate of O (10 m d−1) some 200 km offshore, thus allowing the cold water initially in the filament core to sink below the warmer ambient water by the time the surface velocity core has turned back onshore. This process explains why satellite temperature and color imagery tend to “see” only flow proceeding offshore

    Essential Role of the Cooperative Lattice Distortion in the Charge, Orbital and Spin Ordering in doped Manganites

    Full text link
    The role of lattice distortion in the charge, orbital and spin ordering in half doped manganites has been investigated. For fixed magnetic ordering, we show that the cooperative lattice distortion stabilize the experimentally observed ordering even when the strong on-site electronic correlation is taken into account. Furthermore, without invoking the magnetic interactions, the cooperative lattice distortion alone may lead to the correct charge and orbital ordering including the charge stacking effect, and the magnetic ordering can be the consequence of such a charge and orbital ordering. We propose that the cooperative nature of the lattice distortion is essential to understand the complicated charge, orbital and spin ordering observed in doped manganites.Comment: 5 pages,4 figure

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O →\to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1−x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let

    Manganites at Quarter Filling: Role of Jahn-Teller Interactions

    Full text link
    We have analyzed different correlation functions in a realistic spin-orbital model for half-doped manganites. Using a finite-temperature diagonalization technique the CE phase was found in the charge-ordered phase in the case of small antiferromagnetic interactions between t2gt_{2g} electrons. It is shown that a key ingredient responsible for stabilization of the CE-type spin and orbital-ordered state is the cooperative Jahn-Teller (JT) interaction between next-nearest Mn+3^{+3} neighbors mediated by the breathing mode distortion of Mn+4^{+4} octahedra and displacements of Mn+4^{+4} ions. The topological phase factor in the Mn-Mn hopping leading to gap formation in one-dimensional models for the CE phase as well as the nearest neighbor JT coupling are not able to produce the zigzag chains typical for the CE phase in our model.Comment: 16 pages with 16 figures, contains a more detailed parameter estimate based on the structural data by Radaelli et al. (accepted for publication in Phys. Rev. B

    On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites

    Full text link
    Employing a variational approach that takes into account electron-phonon and magnetic interactions in La1−xAxMnO3La_{1-x}A_xMnO_3 perovskites with 0<x<0.50<x<0.5, the effects of the magnetic field and the oxygen isotope substitution on the phase diagram, the electron-phonon correlation function and the infrared absorption at x=0.3x=0.3 are studied. The lattice displacements show a strong correlation with the conductivity and the magnetic properties of the system. Then the conductivity spectra are characterized by a marked sensitivity to the external parameters near the phase boundary.Comment: 10 figure

    Magnetic, orbital and charge ordering in the electron-doped manganites

    Full text link
    The three dimensional perovskite manganites in the range of hole-doping x>0.5x > 0.5 are studied in detail using a double exchange model with degenerate ege_g orbitals including intra- and inter-orbital correlations and near-neighbour Coulomb repulsion. We show that such a model captures the observed phase diagram and orbital-ordering in the intermediate to large band-width regime. It is argued that the Jahn-Teller effect, considered to be crucial for the region x<0.5x<0.5, does not play a major role in this region, particularly for systems with moderate to large band-width. The anisotropic hopping across the degenerate ege_g orbitals are crucial in understanding the ground state phases of this region, an observation emphasized earlier by Brink and Khomskii. Based on calculations using a realistic limit of finite Hund's coupling, we show that the inclusion of interactions stabilizes th e C-phase, the antiferromagnetic metallic A-phase moves closer to x=0.5x=0.5 while th e ferromagnetic phase shrinks in agreement with recent observations. The charge ordering close to x=0.5x=0.5 and the effect of reduction of band-width are also outlined. The effect of disorder and the possibility of inhomogeneous mixture of competing states have been discussed.Comment: 42 pages, 16 figure
    • 

    corecore