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Abstract: 
 
Coastal-trapped waves with finite-amplitude bottom friction are explored.  “Finite-
amplitude” in this context means that the bottom stresses are large enough to change the 
wave modal structure.  The importance of bottom friction is measured by the 
nondimensional number r/(ωh), where r is a bottom resistance coefficient, ω is the wave 
frequency and h is the water depth.  Increasing bottom drag causes free wave modes to 
adjust by having their amplitude maxima for alongshore current translate offshore to the 
point that, with relatively large bottom stress, the alongshore current variance is trapped 
entirely on the slope, even though pressure variations remain substantial right up to the 
coast.  In conjunction with these adjustments, wave frequency, hence propagation speed, 
varies and the wave damping is usually less than would be expected based on a weak-
friction perturbation calculation.  Stronger density stratification increases wave damping, 
all else being the same.  A mean alongshore flow can strongly affect modal structure and 
wave damping, although general trends are difficult to discern.  Results suggest that 
bottom friction may cause an observed tendency for lower frequency alongshore current 
fluctuations to become relatively more important with distance offshore. 
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1. Introduction: 
 
For many applications of coastal-trapped wave theory, such as hindcasting alongshore 
currents over the continental shelf, the usual approach is to take advantage of a “long 
wave” approximation, i.e., to require that typical frequencies are small relative to the 
inertial, that damping is fairly weak and that alongshore length scales are much greater 
than those in the cross-shelf direction.  In this limit, the wave modes are orthogonal, and 
hindcasting is fairly straightforward.  Although this approach has demonstrated skill for 
sea level and alongshore currents (e.g., Battisti and Hickey, 1984; Chapman, 1987), there 
remain deficiencies and open questions.  One deficiency is the tendency for many wave 
calculations to yield alongshore currents that are strongest near the coast, as opposed to 
an observed maximum farther offshore.  Although this result was found off the U.S. west 
coast (Chapman, 1987: the spatial offset being about 5-10 km on a 20 km-wide shelf) for 
example, the effect there could be due to the structure of the wind stress field (Brink et 
al., 1987).  Off Peru, however, this same discrepancy was found in March-May 1977 
(Brink et al., 1980 vs. Brink, 1982) even though nearby winds do not play a substantial 
role in driving alongshore currents.  It seems possible that the mid-outer shelf velocity 
maximum could potentially be due to bottom friction acting on free coastal-trapped 
waves, as shown by Power et al. (1989) with a simplified barotropic model. 
 
A second class of questions also remains.  First mode coastal-trapped waves, with typical 
periods of O(10days) propagate around the southern coast of Africa and dominate the 
subtidal sea level variability until they begin to propagate into the energetic poleward 
Agulhas current where it is close to shore (de Cuevas et al., 1986; Schumann and Brink, 
1990).  Some have argued that the sudden decrease in propagating variability in this area 
could be due to a critical flow process where waves are no longer able to propagate 
upstream (e.g., Gill and Schumann, 1979). Alternatively, Brink (1990) argued that the 
mean current is not sufficiently strong to stop all propagation and that instead, the relative 
vorticity of the Agulhas deforms coastal-trapped wave structure so as to increase 
frictional wave decay radically.  However, Brink’s (1990) argument was only suggestive 
because it was based on extrapolating perturbation barotropic results for weak damping.  
 
Given these two problems, it is reasonable to revisit the coastal-trapped wave propagation 
problem using a new free baroclinic wave model that allows the inclusion of 
stratification, a mean alongshore flow, finite-amplitude bottom friction and a complex 
wave frequency.  The resulting free, damped, wave modes provide a compact 
representation of frictional effects on the inviscid (or nearly inviscid) solutions. 
 
Given that continental shelf waters are relatively shallow, bottom frictional effects are 
expected to play a substantial role in coastal processes.  Brink and Allen (1978) 
introduced bottom friction into a long barotropic wave model, and deduced damping rates 
and phase changes in the limit of weak dissipation.  Inclusion of dissipation at the outset 
makes the problem inseparable and so leads to a different, complex eigenvalue problem 
for the free wave modes, and a consequent loss of mathematical orthogonality, hence 
utility.  Brink (1990) developed a small-damping perturbation solution for the imaginary 
part of frequency (wave damping) for general frequency and wavenumber, and (for the 
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barotropic case) including a mean alongshore flow.  His results are valid in the limit that 
the wave modal structure is not substantially modified by friction, as it would be with 
finite bottom stress.  Barotropic, long wave modes with finite damping were explored by 
Power et al. (1989), who found that as the bottom friction coefficient (the proportionality 
constant between stress and bottom currents) increases, the modal structures adjust by 
weakening currents close to the coast and having the strongest currents appear 
progressively farther offshore, and so decreasing the net wave decay rates relative to what 
might be expected based on the perturbation results for weak damping.  Analogous 
results were found by Allen (1984) for two-layer coastal-trapped waves, where larger 
friction coefficients lead to increasingly surface-trapped motions and, eventually, a 
decrease in net wave damping.  Finally, Clarke and Van Gorder (1994) studied 
alongshore propagation on interannual time scales along a meridional coastline in a β-
plane ocean.  They found a similar tendency for bottom friction to force propagating 
current variance into deeper water offshore, while pressure remains substantial over the 
shelf and up to the coast. 
 
The specific questions addressed here involve the use of a more general wave model to 
address how bottom friction affects coastal-trapped wave damping and modal structures.  
These influences will be shown to depend on the presence of both a mean flow and 
density stratification. 
 
2. Formulation: 
 
Free wave solutions for Boussinesq, hydrostatic, linearized coastal-trapped waves along a 
straight coast are sought.  The offshore direction is x and the vertical direction is z, where 
the origin is at the surface at the coast.  The depth h(x) and mean alongshore flow v0(x,z) 
are uniform in the alongshore (y) direction.  Dissipative effects are limited to an 
infinitesimally thin bottom boundary.  
 
The equations of motion are: 
 
   vt + u v0x + v0vy + wv0z + fu = - ρ0 -1 py +    ρ0 -1τyz   (2.1) 
 
              ut             + v0uy            - fv = - ρ0 

-1 px  +    ρ0 -1 τxz   (2.2) 
 

                   0 =  - pz – gρ2    (2.3) 
 

             ux + vy + wz  =  0     (2.4) 
 

 ρ2t + u ρ1x  + v0 ρ2y + w ρ1z  = 0,     (2.5) 
 
where u,v,w are the perturbation velocity components in the x ,y ,z directions, 
respectively, p is perturbation pressure,  f is the Coriolis parameter, and density is broken 
up as:  ρ0 + ρ1(x,z) + ρ2(x,y,z,t)  where   ρ0 >> ρ1 >>  ρ2  :  ρ1 is the geostrophically 
balanced (with  v0(x,z ) ) background density field and  ρ2 is the wave perturbation 
density. 
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In all cases, dependent variables subscripted by an independent variable represent partial 
differentiation.  Turbulent vertical stresses in the x, y directions are given by   τx ,  τy,  and 
the bottom stress ( τ0x,  τ0y) is related to the interior bottom velocity by  
 

τ0x =  ρ0 ruB,       τB 0
y =  ρ0r vBB,      (2.6a,b) 

 
where r(x) is a bottom resistance coefficient having units of velocity, and a subscript “B” 
denotes a quantity evaluated at the top of the infinitesimally thin bottom boundary layer. 
Further,  
 

N2 = -gρ0
-1 ρ1z   and      (2.7a) 

 
M2 = -gρ0

-1 ρ1x . .      (2.7b) 
 
The problem is solved by assuming 
 
  p = p(x,y) exp[i(ωt + ly)], etc.,     (2.8) 
 
where the frequency ω can be complex and the alongshore wavenumber l is real.  Using 
this formulation, the problem is reduced to a single partial differential equation for 
pressure 
 
0 = ω' pxx   - 2 ω' s pxz   + ω' N -2(ff' - ω' 2) pzz   – ω'(Q +sz) px  
 

 - [-ω'sQ   + ( ω's)x   + lf -1 s(f 2 - ω' 2)   – (ω' N -2)z(ff' - ω' 2)   – (ω' N -2)(sM2)z]pz 
 
- [lfQ   + ω'l2  + lfsz]p,      (2.9) 

 
where 
 ω' = ω + lv0,        (2.10a) 
 s  = M2/N2,        (2.10b) 
 f'  =  f + v0x,        (2.10c) 

f* = f + v0x – M2s/f,       (2.10d) 
 Q = (ff* - ω' 2)-1[(ff* - ω' 2)x – s(ff* - ω' 2)z].    (2.10e) 
        
This equation and the notation are similar to those of Mooers (1975), except that these are 
for hydrostatic conditions.  In the absence of a mean flow, (2.9) reduces to the familiar 
linearized vorticity equation (e.g., Huthnance, 1978). 
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The boundary conditions are as follows: 
 
Surface:  The free surface boundary condition is 
 

w =  (gρ0)-1[pt + v0py]    at   z = 0.    (2.11) 
 
Bottom:  The bottom boundary condition combines the inviscid tendency for no flow 
through the bottom with the effects of Ekman suction (Brink et al., 1987): 
 

0 = w + hxu + UEx + VEy, at z = -h(x),   (2.12) 
 
where  
 

UE = r(ff* - ω'  2)-1(-i ω' u – fv)B,      (2.13a)  B

 
VE = r(ff* - ω'  2)-1 (f* u – i ω' v)B.      (2.13b) B

 
The simple proportionality of bottom stress to currents (2.6) breaks down in the presence 
of a strongly sheared mean alongshore flow (e.g., Brink, 1997), but this simpler stress 
formulation is retained here.  It should be at least qualitatively correct for Rossby 
numbers less than unity.  In addition, the combined effects of stratification and bottom 
slope can act within the bottom boundary layer to neutralize bottom friction in reality, 
effectively reducing r (e.g., Trowbridge and Lentz, 1991), but this reduction is also not 
accounted for here. 
 
Coast:  The coastal boundary condition requires no net transport through the coastal 
barrier:  
 0 = UE + ∫-h0 u dz ≈  UE + uh(0),      (2.14) 
 
where the approximation is valid if the coastal wall is low relative to the inherent vertical 
scales in the flow field.  For an inviscid problem (r = 0), the condition reduces exactly to 
u = 0. 
 
Offshore:  Since the model numerical domain is finite, a condition that mimics a 
boundedness condition must be chosen.  Following Brink (1982), the condition  
 

ux = 0  at x = xM       (2.15) 
 

is used, where xM lies well offshore of the shelf-slope topography. 
 
The problem can be nondimensionalized using H, L, V, N0, f and r0 as representative 
scales for depth, horizontal distance, mean velocity, stratification, inverse time and 
bottom resistance coefficient, respectively.  The resulting system has four 
nondimensional parameters,  
 

S = (N0H)2/(fL)2, the Burger number, 
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D = (fL)2/(gH), a surface divergence parameter, 

 
R = V/(fL), the Rossby number of the mean flow, and 

 
E = r0/(fH), a form of Ekman number. 

 
Of these parameters, the first two are familiar from Huthnance’s (1978) classic analysis. 
For many coastal problems, the divergence parameter is fairly small and does not play a 
very important role in the analysis.  The Burger number, however, is an important 
measure of the tendency for the flow to be barotropic (small S, or, effectively wide shelf) 
or baroclinic (S of O(0.1-1), or effectively narrow shelf). 
 
The two new parameters have relatively straightforward meanings, although there can be 
difficulties choosing the natural scales in practice because depth typically varies over a 
couple orders of magnitude, and the mean velocity may not have the same inherent scales 
as the topography.  The following analysis will be carried out in dimensional form, but 
the nondimensional numbers are useful for placing results into context. 
 
The above system of equations (2.9-2.15) is transformed to a stretched vertical 
coordinate, θ = z/h(x), system, and is then solved numerically using resonance iteration 
for a complex frequency.  The code is written entirely in Matlab®, and makes use of the 
simplex minimization algorithm, “fminsearch” to search for complex free wave solutions.  
Typically, the calculations presented here use 120 grid points in the offshore direction 
and 30 in the vertical.  All solutions have a nominal accuracy of 0.01% for the absolute 
value of frequency.  The model uses real topography and stratification from offshore of 
the mean flow.  The mean flow can be centered at any depth or location and takes the 
form of a Gaussian with different upward, downward, onshore and offshore scales.  The 
code is capable of dealing with instability problems under fairly general conditions, and 
results from this application will be published elsewhere. 
 
Many of the computed examples here use topography, stratification and mean flow 
representative of a section near 30.5° S (south of Durban, South Africa: Figure 6) across 
the Agulhas current where it flows near the shoreline.  This is section “K” in the notation 
of Schumann and Brink (1990).  The basic mean flow for this section is specified by its 
maximum of 100 cm/sec at the surface at x = 50 km from the coast.  The exponential 
scales in the downward, offshore and onshore directions are 700 m, 50 km and 30km, 
respectively.  For simplicity, f is kept positive (7.71 X 10-5 1/sec) and so the model 
Agulhas current is positive to be consistent. 
 
3. Results: No mean flow. 
 
The effects of damping can be seen in a representative dispersion relation (Figure 1) 
computed using the South African “K” topography and offshore stratification, but setting 
the mean alongshore flow to zero.  This is a case where stratification plays a major role 
(S = 0.12) in determining the wave structure.  The real part of frequency ωR describes the 
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rate of wave propagation in the usual way, while the imaginary part of frequency ωI 
describes the rate of frictional decay.  The ratio of wave kinetic to potential energy in the 
inviscid case, Γ= 1.2, reflects the near-equipartition expected in the pure internal Kelvin 
wave limit (by contrast, a purely barotropic shelf or Rossby wave would have Γ= ∞, if 
the free surface potential energy were ignored through a rigid lid approximation).  The 
dissipative example in Figure 1 uses a bottom resistance coefficient of r = 0.05 cm/sec, a 
value representative of those in the literature.  For comparison, the inviscid wave 
frequencies are also shown (along with the perturbation frictional imaginary part of 
frequency for r = 0.05 cm/sec).  Since this is a case with strong stratification effects, the 
inviscid solutions are, like an internal Kelvin wave, nearly nondispersive for subinertial 
frequencies. 
 
Several frictional effects are evident from the results.  First, the real part of the dispersion 
curve shows that dissipation induces dispersion, especially at the lowest frequencies (ωR 
< 0.3 X 10-5 sec-1 ).  Frequency initially increases more quickly than the linear 
nondispersive rate, and then more slowly before settling down to a curve that nearly 
parallels the inviscid curve.  The perturbation  (Brink, 1990) imaginary part of frequency 
(clearly not used validly for such a large value of r), or dissipation rate, is nearly constant 
over the range shown here, while the more realistic directly calculated damping rates 
(imaginary part of the frequency) are generally smaller, especially at intermediate 
wavenumbers.  That is, the perturbation results, which do not account for frictionally 
induced changes in modal structure, overestimate the wave damping.  For frequencies 
below 0.1 X10-5 sec-1, dissipation rates are greater than real frequencies, so that 
observable propagation becomes unlikely.  Frictional effects thus play a substantial role, 
but what, physically, causes these changes? 
 
The wave modal structures adjust to bottom stresses so that wave damping is mitigated 
(relative to extrapolation of the weak damping case), and so the wave’s propagation 
speed is affected.  This outcome could be anticipated from the barotropic results of Power 
et al. (1989), who showed that increasing bottom drag causes modal structures to adjust 
so that propagating kinetic energy is concentrated in deeper and deeper water, where 
dissipation relative to water column height (local Ekman number) actually decreases. 
 
One way to gain some perspective on these results is to consider how waves at a fixed 
wavenumber adapt as the resistance coefficient (or, equivalently, Ekman number) is 
increased (Figure 2a).  For very weak damping (r = 0.001 cm/sec), the wave modal 
structure is essentially that of the inviscid limit, and the perturbation damping rate results 
are valid.  The perturbation estimate, which necessarily increases linearly with resistance, 
is simply the extension of the initial slope of the damping vs. r curve.  This extrapolated 
estimate is always greater than the calculated damping rate (Figure 2b), so it appears 
(from this and results below) that frictionally induced adjustments in modal structures 
act, in general, to mitigate wave decay.  However, the amount of mitigation will be 
shown to be a function of stratification, mean flow and topography. 
 
As in the barotropic (Power et al., 1989) case, the present baroclinic wave mode adjusts 
to stronger damping by having the strongest modal alongshore currents move offshore 
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into deeper water (Figure 3, left panels).  At the same time, pressure (Figure 3, right 
panels) inshore of the current maximum becomes relatively uniform in the cross-shelf 
direction so that a wave would remain detectable in coastal sea level even if currents over 
the shelf were weak.  Initially, the velocity structural change leads to weaker damping 
when the net volume of water affected by bottom friction increases.  However, as the 
velocity peak moves into deeper water, the wave becomes bottom trapped with a vertical 
length scale (from scaling 2.9 with no mean flow) of order (f/N)L, where L is typically the 
width of the continental slope for this application.  Because of this bottom trapping, the 
volume of water affected by bottom stress does not increase substantially as the wave 
“slides” into deeper water.  Hence, to the extent stratification is important, it tends to 
enhance the role of bottom stress relative to a barotropic case, where the relevant vertical 
scale is always the total water depth (which does increase offshore).  On the other hand, 
as stratification (or S) is decreased substantially, bottom trapping is much less severe, and 
so the wave structure still tends to occupy most of the water column as the velocity 
maximum moves offshore.  Consequently, the decrease in damping (relative to the 
perturbation results:  Figure 2b) is much greater when the effects of stratification are 
weak.  As a result, the perturbation wave damping rates are less inaccurate if stratification 
is important, even though modal structures change substantially as a function of r in any 
case. 
 
Returning now to the frictional dispersion curve (Figure 1, real part), the results are more 
understandable.  Modal structures for both longer (Figure 4a) and shorter wavelengths 
(Figure 4b) are strongly bottom trapped, but over the lower slope or upper slope, 
respectively.  This gravest coastal-trapped wave mode would, without damping, have its 
first mode velocity variance trapped mainly over the shelf (similar to Figure 3a, which 
has very weak damping).  Thus, the modal structures are all very strongly affected by 
damping, so that the wave becomes a damped bottom-trapped mode (having some 
features in common with the inviscid waves of Rhines, 1970) on the upper and lower 
slopes.  Differences in slope and stratification with depth thus appear to account for 
whether the real part of frequency falls above or below the dispersion curve for the rather 
different, shelf-trapped inviscid wave modes.  For much shorter wavelengths (higher real 
frequencies:  l = 1 X 10-7 cm-1, ω = 2.97 X 10-5 + i1.74 X 10-6 sec-1), the modal structure 
is extremely similar to that for the inviscid case, and the real frequencies agree to within 
about 1%.  Thus, for a fixed stratification, the importance of dissipation depends strongly 
on both the bottom resistance coefficient and on the frequency.  This dependence can be 
readily rationalized by nondimensionalizing the coastal boundary condition (2.14).  The 
importance of friction is then seen to depend upon  
 

(σdC)-1E = r/[ωh(0)], 
 

where σ is the nondimensional wave frequency and dC is the nondimensional depth at the 
coast. 
 
A second geographic example treats the western coast of Australia, where the shelf is 
physically shallow (50 m) and quite wide, about 75 km and S = 0.07. The example is 
based on the Dongara mooring line (Smith et al., 1991) at  29.5° S. Results are presented 
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in the form of dispersion curves (Figure 5), comparable to Figure 1. For small 
wavenumbers (low frequency), the frictional, r = 0.05 cm/sec, dispersion curves look 
very similar to the Agulhas case, in that the real part of frequency does not obviously 
tend toward zero, and that the imaginary part first decreases and then increases with 
wavenumber (decreasing alongshore scales). At higher frequencies, however, the real 
part of frictional frequency diverges dramatically from the nondissipative case, unlike the 
narrow shelf case. The perturbation estimate of ωI is far too large at all wavenumbers. 
The reason is straightforward. Over the shelf, at these frequencies, r/(ωh) is everywhere  
> 0.67. That is to say that damping is very strong everywhere on the shelf, and the modal 
structures (not shown) adjust so that alongshore velocity over the shelf approaches zero 
while the shelf pressure approaches a constant. Physically, then, the shelf plays a passive 
role, and the effective coastal boundary moves offshore to an isobath deeper than about 
50 m. The remaining wave is then associated with the fairly narrow, O(90 km) offshore 
remainder of the shelf-slope topography. This narrow topography in turn is consistent 
with much slower wave propagation. This finding is anticipated by the analysis of 
Mitchum and Clarke (1986) who advocated placing coastal-trapped wave nearshore 
boundaries on the isobath where the water depth is equal to three times the Ekman scale 
depth, or roughly where h = 6r/f (= 43 m for r = 0.05 cm/sec) in the present notation. 
Experimentation here suggests that four times the scale depth (56 m) would be a better, 
but still imperfect, choice at least for estimating the damping rate. Other than this 
offshore displacement of the effective coastal location, the wide shelf results are 
consistent with the South African example in that, with increasing bottom friction, the 
wave modal structure becomes increasingly concentrated in deeper water so that 
perturbation dissipation estimates are always too high. 
 
4. Results: With mean alongshore flow. 
 
The effects of a mean alongshore flow are explored by considering section K conditions 
representative of the Agulhas current off of the coast of KwaZulu-Natal, South Africa 
(Figure 6).  Complex wave frequency as a function of the bottom resistance parameter r 
for a fixed alongshore wavenumber (Figure 7) again illustrates key results.  The most 
obvious mean flow effect is Doppler shifting: with a flow in the direction of free coastal-
trapped wave propagation (opposite to the Agulhas), the real part of wave frequency 
increases, and, when flow opposes free wave propagation (the sense of the Agulhas), the 
frequency decreases (Figure 7).  
 
The wave damping in this example depends strongly on the sense of the flow.  When the 
flow is reinforcing or nil, results are similar:  the imaginary part of frequency increases 
fairly slowly with r, and the directly computed damping is far less than that predicted by 
the perturbation theory (the perturbation result can be visualized as the line tangent to the 
ωI curve at r = 0).  This is as expected from section 3.  However, with mean flow 
opposed to wave propagation (the realistic case for the Agulhas), wave damping 
increases nearly linearly with resistance coefficient, so that the perturbation result for 
damping is a fair estimate for the entire range represented.  Damping is so strong that, for 
this wavenumber, free wave propagation practically ceases (e-folding distance of 690 km 
for l = 1X10-8cm-1 and r = 0.05 cm/sec), although the decay distance does increase by 
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somewhat more than about 20% as wavenumber increases by an order of magnitude.  
Thus, the presence of the Agulhas greatly increases net wave damping relative to the case 
of no mean flow. 
 
Why should this be?  The inviscid alongshore velocity modal structures differ 
considerably depending on the sign of the mean flow (Figure 8).  When flow is in the 
direction of free waves, the modal structure extends far off the shelf, but with flow 
counter to wave propagation, the flow concentrates strongly onto the shelf.  
Concentrating wave variance over the shelf makes the wave more susceptible to damping 
since there are relatively stronger currents and less volume of moving water to spin down 
for a given stress.  This tendency can be crudely quantified by computing for each mode 
the area over which the magnitude of alongshore velocity exceeds 20% of the maximum 
magnitude.  For the examples of inviscid wave modes with Agulhas, quiescent and anti-
Agulhas flow, the areas are 7, 16 and 33 km2, respectively.  As r is increased, the wave 
mode for the Agulhas (opposing) flow remains tightly bunched, e.g., for r = 0.04 cm/sec, 
the areas are 4, 19 and 24 km2, respectively.  The apparent reason for this compressed 
modal structure is the mean potential vorticity gradient: for the Agulhas example, the 
mean flow potential vorticity gradient v0xx/h is comparable in magnitude- O(2X10-16 (sec 
cm2)-1)  to the topographic potential vorticity gradient, -fhx/h2 – O(-6 X10-16 (sec cm2)-1)- 
and opposes it at the shelf edge, while reinforcing it near the jet core.  
 
The examples in Figures 2 and 7 all show the real part of wave frequency initially 
decreasing as the friction coefficient increases.  This is not always the case.  For example, 
in the Agulhas-like case where flow opposes wave propagation, the second wave mode 
frequency (not shown) increases with r over the whole range from r = 0 to 0.12 cm/sec.  
The difference is likely associated with the second mode’s more complex spatial 
structure. 
 
The Agulhas example shows that an opposing mean current causes a substantial increase 
in coastal-trapped wave damping. Is this result to be expected in general?  A comparable 
situation is found in the United States South Atlantic Bight, where the Gulf Stream also 
flows in the sense opposite to free wave propagation.  This case is treated using 
parameters adapted from Luther and Bane (1985).  Relative to southeastern Africa, the 
Gulf Stream case should have more barotropic waves overall, since the Burger number is 
smaller than for the Agulhas example (S = 0.03 vs. 0.12, respectively).  For the South 
Atlantic Bight case (Figure 9), the real wave frequency decreases monotonically with r 
(both with and without a mean flow), as in the South African case with v0 = 0 and 
decreasing stratification (Figure 2).  Damping is somewhat enhanced by the Gulf Stream 
mean flow for r < 0.05 cm/sec, but the reduction in damping relative to the perturbation 
results is greater in the presence of a mean flow than in a quiescent ocean.  Thus, because 
a western boundary current-type mean flow does not always enhance damping, the 
Agulhas results are thus not general. 
 
The main conclusion from the above is that coastal-trapped wave damping and modal 
structure can be substantially affected by a mean alongshore flow, but the sense and 
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magnitude of the changes depend sufficiently on the details of the mean fields that 
generalizations are difficult. 
 
5. Discussion 
 
Including bottom friction at lowest order in a coastal-trapped wave model changes the 
results in several ways.  Although wave damping generally increases as the bottom 
frictional coefficient increases, it does so less strongly (often, much less strongly) than 
would be expected from a weak-friction perturbation result.  This mitigation happens 
because, with increasing bottom resistance, the wave modal structure adjusts to move the 
maximum in wave alongshore current variance farther and farther offshore.  As this 
happens, frictional influences are distributed over a larger water volume (limited by 
either the total water depth or the bottom trapping scale, whichever is less), and so wave 
decay becomes relatively less.  At higher frequencies, adjustment is not as strong, 
consistent with the overall importance of bottom friction scaling as (σdC)-1E.  The 
effectiveness of this mitigation by wave structural change is greater for cases with weaker 
ambient density stratification (smaller S).  Although the wave velocity amplitude 
maximum moves offshore with increasing friction, the pressure field over the shelf for 
low modes adjusts to a fairly constant (in x, z) value, so that coastal sea level still reflects 
trapped current variability, albeit at positions farther and farther offshore. 
 
A mean alongshore current can greatly increase the damping of a particular wave, but this 
outcome depends strongly on the specifics of the mean current, stratification and 
topography.  
 
Over a sloping bottom, buoyancy-induced bottom boundary layer arrest (e.g., Trowbridge 
and Lentz, 1991) should counteract the tendency for friction to have its strongest effects 
at lowest frequency.  One might expect instead that for coastal-trapped wave periods long 
compared to the time it takes for buoyancy to halt Ekman transport, wave damping 
should approach zero.  For wave periods short relative to the shut-down time, bottom 
stress would be expected to be largely unaffected by buoyancy effects.  Chapman (2002), 
however, points out that the situation is not this simple because partial shut-down can 
apparently be found on shorter time scales than a simple scaling argument might suggest.  
Thus, a straightforward approach to accounting for boundary layer shut-down physics in 
the present coastal-trapped wave model is elusive. 
 
The results of sections 3 and 4 suggest that the shelf and slope topography acts as a 
natural temporal filter for alongshore current and sea level changes.  At lower 
frequencies, (σdC)-1E is larger, the effect of friction is greater and the wave modal 
structure has its maximum increasingly farther offshore (e.g., Figure 4).  Currents over 
the shelf become increasingly quiescent as frequency decreases.  Thus, given a spectrum 
of incoming energy, shelf currents ought to be typified by shorter independence time 
scales (integral of the autocorrelation from 0 to infinity) than those measured farther 
offshore where lower frequency variability is permitted, hence relatively more important.  
For bottom pressure, that is not attenuated over the shelf but that has increasingly large 
offshore extension at lower frequencies, time scales also ought to become longer 
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offshore, but in this case it would be because of the relative absence of higher frequency 
variability farther offshore. If one thinks of wind-driven alongshore currents as a 
superposition of almost free waves, similar results also ought to apply to wind-forced 
currents and bottom pressure. 
 
As a test of the filtering notion, independence time scales are computed from demeaned, 
detrended low-pass filtered alongshore currents over the Peruvian shelf and slope near 
15°S (Brink et al., 1978), where S = 0.5.  Peru is a good setting to consider because of its 
relative absence of known mesoscale activity offshore.  Only the 70-day long May-July 
1976 records are long enough to obtain reliable results.  During this period, alongshore 
currents were not well correlated with the local alongshore winds.  The two moorings in 
place at that time (one over the shelf and one over the slope) lay along an onshore-
offshore line, and both span roughly the lower 75% of their water column.  In order to 
compare results compactly, time scales are computed for the first Empirical Orthogonal 
Function for alongshore velocity at each mooring. These modes both represent at least 
70% of the local variance (Table I), both have their highest amplitudes at shallower 
depths and neither has a flow reversal with depth.  Time scales range from 1.7 days in 
128 m of water to 4.6 days over the slope in 465 m.  Similarly, northern California 
empirical modes for CODE-2 (Winant et al., 1987;   S = 0.09) 113-day long alongshore 
velocity records were computed (Table I):  the modes from the four C-line moorings have 
similar properties to those for the Peru moorings and an offshore progression of time 
scales from 1.7 days (C2: 60 m depth) near the coast to 3.4 days over the slope (C5: 400 
m).  The second slope mode was more bottom-intensified than the first and had a slightly 
longer time scale:  3.6 days.  The CODE records represent a more clearly wind-driven 
domain than Peru, so they should be treated with greater caution. A third example, from 
the physically wide shelf off western Australia is less encouraging. In this case, the time 
scales for shelf and slope modes are similar, with the shelf time scale being slightly 
longer (Table I). Inspection of the autospectra show that the difference occurs because of 
variability at periods longer than 50 days: otherwise, the slope mode’s spectrum is 
“redder”, as expected. This outcome apparently reflects the presence of substantial 
mesoscale eddy activity offshore of the Dongara line (Stammer, 1997; Feng et al., 2005), 
an effect not accounted for in the present theory. Other potential data sets for evaluation 
of the filtering conjecture were also sought, but the available long, coincident shelf and 
slope mooring deployments were generally in locations of substantial offshore mesoscale 
variability (e.g., Freeland et al., 1986; Nowlin et al., 2005) 
 
These observational results are somewhat consistent with the effects of bottom frictional 
modal modification, but far from conclusive.  A stronger test would call for a more 
careful calculation that takes into account buoyancy and the frequency, amplitudes and 
structures of incoming coastal-trapped wave modes.  Further, other possibilities (such as 
the onshore penetration of open ocean mesoscale features) would need to be addressed.  
Nonetheless, the observed occurrence of lower frequencies being more important in 
deeper water at least leaves open the possibility that the present frictional filtering 
concept is valid and that boundary layer damping remains at least somewhat effective 
despite the potential for boundary layer shut-down. 
 

 12



Finally, does the finite-damping model account for the rapid decay of coastal-trapped 
waves off eastern South Africa?  Yes, at least partially. For a reasonable resistance 
coefficient of 0.05 cm/sec, the wave decay distance (depending on frequency) is in the 
range of about 690-900 km. While this is a fairly rapid decay rate (and much enhanced 
over the case with no mean flow: Figure 7), it does not appear to be quite short enough to 
account for all of the observed disappearance of the coastal-trapped wave energy over an 
alongshore distance of about 500 km. Perhaps, given the uncertainty in estimating the 
friction parameter r, this is sufficiently good agreement. The alternative hypothesis (Gill 
and Schumann, 1979) is that wave propagation is prevented through a critical flow 
condition. However, at least one upstream-propagating wave mode, with speed about 250 
cm/sec or less, is calculated to exist, so that the gravest coastal-trapped wave modes can 
not disappear because a critical flow condition is reached. In conclusion, of the two 
explanations for why coastal-trapped waves do not reach Durban, enhanced frictional 
decay now seems the most credible. 
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Table 1: Independence time scales for empirical orthogonal function mode 1 of 
alongshore currents. 

 
 
 Mooring   Water depth (m) Time scale  % Variance 
 
Off Peru, near 15°S, May-July 1976 (S = 0.5): 
 
 Mila II    128 m         1.7 days 92% 
 Lagarta   465 m   4.6 days 74% 
 
Off California, near 38.5° N, March-August, 1982 (S= 0.09): 
 
 C2    60 m   1.7 days 91% 
 C3    90 m   1.9 days 94% 
 C4    130 m   2.3 days 81% 
 C5    400 m   3.4 days 68% 
 
Off western Australia near 29.5° S, September, 1986- August, 1987 (S = 0.07): 
 
 D2    108 m   4.8 days 91%  
 D4    704 m   4.5 days 79% 
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Figures Captions: 
 

Figure 1:  First mode dispersion curves with r = 0.05 cm/sec for stratification and 
topography representative of section K off southeastern Africa (between Port 
Elizabeth and Durban) with no mean alongshore flow.  Perturbation results are shown 
by a dotted line.  For the calculated results, the real part of frequency ωR is shown as a 
solid line, and the imaginary part of frequency ωI as a dashed line.  The circles mark 
the frequencies for the wave modes shown in Figure 4. 

 
Figure 2:  (a) Real part of frequency for the first coastal trapped wave mode as a function 
of bottom resistance parameter, r, for southeastern Africa section K with no mean 
alongshore flow and l = 1 X 10-8 cm-1.  Real parts of frequency are shown as solid lines, 
and imaginary are dashed.  The different cases correspond to realistic stratification, and 
for the same N2 scaled down by a factor of 10 or 100.  (b) Calculated imaginary part of 
frequency (from Figure 2a) normalized by perturbation damping estimates for the three 
different stratifications: the observed value (N2), and values weakened by a factor of 10 
(N2/10) and 100 (N2/100). 
 
Figure 3:  First mode coastal trapped wave alongshore velocity (left) and pressure (right) 

modal structures for l = 1 X 10-8 cm-1 and (a) r = 0.001 cm/sec, (b) r = 0.03 cm/sec, 
and (c) r = 0.1 cm/sec.  Modes were computed for southeastern Africa section K and 
no mean flow.  Amplitude is shown as filled contours, and phase by dashed contours. 
Amplitudes are arbitrary. 

 
Figure 4:  First mode alongshore velocity modal structures for southeastern Africa section 

K with no mean alongshore flow, and r = 0.05 cm/sec.  The values used here are 
shown as small circles on Figure 1.  (a) ωR = 7.59 X 10-7 sec-1, ωI = 10.42 X10-7 sec –1 
and l = 1 X10-9 cm-1.  (b) ωR = 44.76 X 10-7 sec-1, ωI = 8.48 X 10-7 sec-1 and l = 16 X 
10-9 cm-1. 

 
Figure 5: First mode dispersion curves with r = 0.05 cm/sec for stratification and 

topography representative of the Dongara line west of Australia with no mean 
alongshore flow.  Perturbation results are shown by a dotted line.  For the calculated 
results, the real part of frequency ωR is shown as a solid line, and the imaginary part 
of frequency ωI as a dashed line. 

 
Figure 6:  Mean stratification (σt units minus a constant background) and mean 

alongshore velocity (cm/sec) for conditions representative of southeastern African 
section K (velocity is opposite to the true Agulhas so as to compensate for the use of  
f > 0). 

 
Figure 7:  First mode wave frequency for l = 1 X 10-8 cm-1 as a function of resistance 

parameter r for mean alongshore flow opposed to wave propagation (“Agulhas 
case”), no mean flow, and mean flow in the same direction (“reversed mean flow”) as 
coastal-trapped wave propagation.  Real part of frequency ωR is shown by solid lines, 
and imaginary part ωI by dashed lines. 
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Figure 8:  First mode alongshore velocity modal structures for r = 0, l = 1 X 10-8 cm-1, 

and conditions representative of southeastern Africa line. The plotting convention is 
as in Figure 3. (a) with mean flow as in Figure 6, opposed to coastal trapped wave 
propagation;  (b) with mean flow opposite to that in Figure 6, i.e., in the same 
direction as coastal-trapped wave propagation. 

 
Figure 9:  First mode wave frequency as a function of bottom resistance parameter r for 

conditions representative of the U.S. South Atlantic Bight and l = 1 X 10-8 cm-1. 
Results are shown for no mean alongshore flow, and with a Gulf Stream present. 
Solid lines are the real part of frequency ωR, and dashed lines for the imaginary part 
of frequency ωI. 
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Figure 1:  First mode dispersion curves with r = 0.05 cm/sec for stratification and 
topography representative of section K off southeastern Africa (between Port Elizabeth 
and Durban) with no mean alongshore flow.  Perturbation results are shown by a dotted 
line.  For the calculated results, the real part of frequency ωR is shown as a solid line, and 
the imaginary part of frequency ωI as a dashed line.  The circles mark the frequencies for 
the wave modes shown in Figure 4. 
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a) 

b)  

 
 
Figure 2:  (a) Real part of frequency for the first coastal trapped wave mode as a function 
of bottom resistance parameter, r, for southeastern Africa section K with no mean 
alongshore flow and l = 1 X 10-8 cm-1.  Real parts of frequency are shown as solid lines, 
and imaginary are dashed.  The different cases correspond to realistic stratification, and 
for the same N2 scaled down by a factor of 10 or 100.  (b) Calculated imaginary part of 
frequency (from Figure 2a) normalized by perturbation damping estimates for the three 
different stratifications: the observed value (N2), and values weakened by a factor of 10 
(N2/10) and 100 (N2/100). 
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Figure 3:  First mode coastal trapped wave alongshore velocity (left) and pressure (right) modal 
structures for l = 1 X 10-8 cm-1 and (a) r = 0.001 cm/sec, (b) r = 0.03 cm/sec, and (c) r = 0.1 
cm/sec. Modes were computed for southeastern Africa section K and no mean flow.  Amplitude 
is shown as filled contours, and phase by dashed contours. Amplitudes are arbitrary. 
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Figure 4:  First mode alongshore velocity modal structures for southeastern Africa section 
K with no mean alongshore flow, and r = 0.05 cm/sec.  The points are shown by small 
circles on Figure 1.  (a) ωR = 7.59 X 10-7 sec-1, ωI = 10.42 X 10-7 sec–1 and l = 1 X 10-9 
cm-1.  (b) ωR = 44.76 X 10-7 sec-1, ωI = 8.48 X 10-7 sec-1 and l = 16 X 10-9 cm-1. 
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Figure 5: First mode dispersion curves with r = 0.05 cm/sec for stratification and 

topography representative of the Dongara line west of Australia with no mean 
alongshore flow.  Perturbation results are shown by a dotted line.  For the calculated 
results, the real part of frequency ωR is shown as a solid line, and the imaginary part 
of frequency ωI as a dashed line. 
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Figure 6:  Mean stratification (σt units minus a constant background) and mean 
alongshore velocity (cm/sec) for conditions representative of southeastern African section 
K (velocity is opposite to the true Agulhas so as to compensate for the use of f > 0). 
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Figure 7:  First mode wave frequency for l = 1 X 10-8 cm-1 as a function of resistance 

parameter r for mean alongshore flow opposed to wave propagation (“Agulhas 
case”), no mean flow, and mean flow in the same direction (“reversed mean flow”) as 
coastal-trapped wave propagation.  Real part of frequency ωR is shown by solid lines, 
and imaginary part ωI by dashed lines. 
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Figure 8:  First mode alongshore velocity modal structures for r = 0, l = 1 X 10-8 cm-1, 

and conditions representative of southeastern Africa line. The plotting convention is 
as in Figure 3. (a) with mean flow as in Figure 6, opposed to coastal trapped wave 
propagation;  (b) with mean flow opposite to that in Figure 6, i.e., in the same 
direction as coastal-trapped wave propagation. 
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Figure 9:  First mode wave frequency as a function of bottom resistance parameter r for 
conditions representative of the U.S. South Atlantic Bight and l = 1 X 10-8 cm-1.  Results 
are shown for no mean alongshore flow, and with a Gulf Stream present.  Solid lines are 
the real part of frequency ωR, and dashed lines for the imaginary part of frequency ωI. 
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