54 research outputs found

    The origin of the 90 degree magneto-optical Kerr rotation in CeSb

    Full text link
    We calculate the linear magneto-optical Kerr rotation for CeSb in the near-infrared spectral range. Using an exact formula for large Kerr rotation angles and a simplified electronic structure of CeSb we find at \hbar \omega = 0.46 eV a Kerr rotation of 90 degree which then for decreasing \omega jumps to -90 degree as recently observed. We identify the general origin of possible 180 degree polarization rotations as resulting from mainly nonmagnetic optical properties, in particular from the ratio of the dominant interband resonance frequency to the plasma frequency. The dependence of the Kerr rotation on moments and magnetization is discussed.Comment: 6 pages, REVTEX, 5 eps figure

    A new approach for perovskites in large dimensions

    Full text link
    Using the Hubbard Hamiltonian for transition metal-3d and oxygen-2p states with perovskite geometry, we propose a new scaling procedure for a nontrivial extension of these systems to large spatial dimensions DD. The scaling procedure is based on a selective treatment of different hopping processes for large DD and can not be generated by a unique scaling of the hopping element. The model is solved in the limit DD \rightarrow \infty by the iterated perturbation theory and using an extended non-crossing approximation. We discuss the evolution of quasi particles at the Fermi-level upon doping, leading to interesting insight into the dynamical character of the charge carriers near the metal insulator instability of transition metal oxide systems, three dimensional perovskites and other strongly correlated transition metal oxides.Comment: 5 pages (TeX) with 2 figures (Postscript

    Theory for the Doping Dependence of Spin Fluctuation Induced Shadow States in High-Tc_{c} Superconductors

    Full text link
    We analyze the doping dependence of the intensity and energetical position of shadow states in high -Tc_{c} superconductors within the 2D Hubbard model and using our recently developed numerical method for the self consistent summation of bubble and ladder diagrams. It is shown that shadow states resulting from short range antiferromagnetic correlations occur for small but finite excitation energies which decrease for decreasing doping, reflecting a dynamically broken symmetry with increasing lifetime. Simultanously, the intensity of these new states increases, the quasiparticle dispersion is strongly flattened, and a pseudogap in the density of states occurs. Finally, we discuss the importance of flat bands at the Fermi level and nesting of the Fermi surface as general prerequisites for the observability of shadow states.Comment: 9 pages (TeX) with 3 figures (Postscript

    Electronic Theory for Bilayer-Effects in High-T_c Superconductors

    Full text link
    The normal and the superconducting state of two coupled CuO_2 layers in the High-T_c superconductors are investigated by using the bilayer Hubbard model, the FLEX approximation on the real frequency axis and the Eliashberg theory. We find that the planes are antiferromagnetically correlated which leads to a strongly enhanced shadow band formation. Furthermore, the inter-layer hopping is renormalized which causes a blocking of the quasi particle inter-plane transfer for low doping concentrations. Finally, the superconducting order parameter is found to have a d_{x^2-y^2} symmetry with significant additional inter-layer contributions.Comment: 5 pages, Revtex, 4 postscript figure

    Theory for the Interdependence of High-Tc_c Superconductivity and Dynamical Spin Fluctuations

    Full text link
    The doping dependence of the superconducting state for the 2D one-band Hubbard Hamiltonian is determined. By using an Eliashberg-type theory, we find that the gap function Δk\Delta_{\bf k} has a dx2y2d_{x^2-y^2} symmetry in momentum space and Tc_c becomes maximal for 13  %13 \; \% doping. Since we determine the dynamical excitations directly from real frequency axis calculations, we obtain new structures in the angular resolved density of states related to the occurrence of {\it shadow states} below Tc_c. Explaining the anomalous behavior of photoemission and tunneling experiments in the cuprates, we find a strong interplay between dd-wave superconductivity and dynamical spin fluctuations.Comment: 4 pages (REVTeX) with 4 figures (Postscript

    Magnetocrystalline Anisotropy Energy of a Transition Metal Monolayer: A Non-perturbative Theory

    Full text link
    The magnetocrystalline anisotropy energy EanisE_{anis} for a monolayer of Fe and Ni is determined using a fully convergent tight-binding calculation including ss-dd hybridization. The spin-orbit interaction λso\lambda_{so} is treated non-perturbatively. Remarkably, we find Eanisλso2E_{anis}\propto\lambda_{so}^2 and important contributions to EanisE_{anis} due to the lifting of degeneracies near the Fermi-level. This is supported by the calculated decrease of the anisotropy energy with increasing temperature on a scale of several hundred K. Our results clarify the present debate on the origin of EanisE_{anis}.Comment: 11 pages (RevTeX) with 2 figures, appended as Postscript file

    Electronic Theory for the Transition from Fermi-Liquid to Non-Fermi-Liquid Behavior in High-Tc_{c} Superconductors

    Full text link
    We analyze the breakdown of Fermi-liquid behavior within the 2D Hubbard model as function of doping using our recently developed numerical method for the self consistent summation of bubble and ladder diagrams. For larger doping concentrations the system behaves like a conventional Fermi-liquid and for intermediate doping similar to a marginal Fermi-liquid. However, for smaller doping pronounced deviations from both pictures occur which are due to the increasing importance of the short range antiferromagnetic spin fluctuations. This is closely related to the experimental observed shadow states in the normal state of high-TcT_c superconductors. Furthermore, we discuss the implications of our results for transport experiments.Comment: 11 pages (REVTeX) with 4 figures (Postscript

    Model study for the nonequlibrium magnetic domain structure during the growth of nanostructured ultrathin films

    Full text link
    The nonequilibrium magnetic domain structure of growing ultrathin ferromagnetic films with a realistic atomic structure is studied as a function of coverage and temperature. We apply a kinetic Monte Carlo method to a micromagnetic model describing the transition from superparamagnetic islands at low coverages to a closed ferromagnetic film. The magnetic relaxation and the island growth happen simultaneously. Near the percolation threshold a metastable magnetic domain structure is obtained with an average domain area ranging between the area of individual magnetic islands and the area of the large domains observed for thicker ferromagnetic films. We conclude that this micro-domain structure is controlled and stabilized by the nonuniform atomic nanostructure of the ultrathin film, causing a random interaction between magnetic islands with varying sizes and shapes. The average domain area and domain roughness are determined. A maximum of the domain area and a minimum of the domain roughness are obtained as a function of the temperature.Comment: 19 pages, 4 Postscript figures; to be published in J. Magn. Magn. Mater., accepted (2001); completely revised manuscrip

    Phonon anomalies at the valence transition of SmS : An inelasticX-ray scattering study under pressure

    Full text link
    The phonon dispersion curve of SmS under pressure was studied by inelastic x-ray scattering around the pressure-induced valence transition. A significant softening of the longitudinal acoustic modes propagating along the [111] direction was observed spanning a wide qq region from (2π3a,2π3a,2π3a\frac{2\pi}{3a},\frac{2\pi}{3a},\frac{2\pi}{3a}) up to the zone boundary as SmS becomes metallic. The largest softening occurs at the zone boundary and stays stable up to the highest measured pressure of 80 kbar while a gradual hardening of the low qq modes simultaneously appears. This phonon spectrum indicates favorable conditions for the emergence of pressure-induced superconductivity in SmS.Comment: 4 pages, 3 figure
    corecore