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Abstract The influence of a few factors on the critical tem-
perature in a two-band superconducting system is investi-
gated. The system contains conventional Cooper pairs from
a wider band (the d-band) as well as local pairs (local bipo-
larons) from a narrower band (the f-band), which are in-
duced via a pair-exchange potential. These factors are the
Coulomb repulsion between f-electrons, the position of the
f-band with respect to the bottom of the d-band and two
kinds of hopping in the f-band: a single-polaron hopping and
a pair hopping. The Coulomb potential turns out to lower
the critical temperature from higher values to the pure BCS
one. Each of the kinds of hopping is treated by making use
of perturbation theory. Pair hopping is incorporated as the
first order correction but the hopping of single polarons en-
ters as the second order one. Each of them increases this
temperature on its own, however, the hopping of single po-
larons makes it stronger. The position of the f-band that cor-
responds to the site energy of a f-electron poses a very inter-
esting case. There appear two peaks at two values of that en-
ergy meaning a rapid increase of the critical temperature due
to the strong effect of the presence of local electron pairs. In
this case one has to do with a purely chemical mechanism
of the increase of the critical temperature.
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1 Introduction

For last decades there has been much progress in the
discovery of new phenomena in solid state physics. The
high-temperature superconductivity or the so-called heavy-
fermion superconductivity belongs to this class. An espe-
cially intriguing question became the problem of mecha-
nisms leading to such effects. The crucial question is how
the critical temperature can be increased in relation to the
BCS values. The simplest way was to reconsider the ex-
pression for the critical temperature in the BCS theory and
take into account the manipulation on the width of the nar-
row shell around the Fermi level on which the BCS inter-
action is defined to be nonzero and the magnitude of the
coupling constant. However, in view of experimental facts
such an approach seems at least insufficient. The internal
structure of new superconducting materials is much more
complicated than the structure of simple metals or their al-
loys. The conventional BCS theory based on the concept
of the phonon-mediated two-electron attraction does not in-
clude this at all. That is why there have been invoked many
proposals of mechanisms explaining not only higher criti-
cal temperatures but a lot of other features of new materials.
For example new boson fields were suggested to mediate be-
tween electrons due to the weakness of the isotope effect in
these exotic superconductors. Let us mention plasmons [1,
2], spin fluctuations [3, 4] or even excitons [5, 6]. Especially
important is the fact that the critical temperature of cuprates
strongly depends on doping and the crystal structure. More-
over, the significance of correlations between electrons is
stressed by many authors [7, 8]. All of this entails the so
called non-Fermi liquid behavior of the normal phase and
the fact that some undoped high-temperature superconduc-
tors are Mott insulators with antiferromagnetically ordered
ground state. Especially interesting is the fact that sufficient
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doping brings about the mixed valence of copper in cuprates
what leads to the appearance of mobile holes or electrons.
Moreover, it is widely known that the critical temperature
is sensitive to the number of CuO2 planes. Still there is
no agreement if phonons are important concerning super-
conductivity in new materials. However, despite the very
poor isotope effect in many high-temperature superconduc-
tors phonons are still regarded by some researchers to play
an essential role [9, 10]. For example, a mixed mechanism
of superconductivity in the new materials was considered.
This concept joined the strong coupling between phonons
and electrons with the spin fluctuations idea [11].

Multi-band models are usually invoked to describe su-
perconductivity in new materials. One can mention here the
d–p model [12], the three-state Hubbard model [13] or the
boson–fermion model [10, 14–17]. In all of these models
electric charge is transferred from one band to the other,
however, in the latter case this exchanged charge is in the
form of electron pairs (quasibosons). In this paper a two-
band electron system is investigated. The critical tempera-
ture and different factors influencing this temperature are the
main points of examining. One of the bands is assumed to
be wider than the other one. Moreover, it is conjectured that
the effective Coulomb interaction in the wider band (the d-
band) is attractive and is dealt with the BCS approximation.
In the narrower band (the f-band) the effective Coulomb po-
tential is repulsive. In general, it is admitted that the charge
can be exchanged both via a single-particle hybridization
and a pair exchange potential. To deal with a simplified
version of a Hamiltonian some terms in the Hamiltonian,
for instance the single-particle hybridization, are neglected.
In this case such a simplified Hamiltonian is equivalent to
that one obtained and investigated by Micnas et al. in [10,
14], by Pawłowski and Robaszkiewicz in [15] and moreover
Czart and Robaszkiewicz in [16, 17]. In those papers the
boson–fermion model was derived from the periodic Ander-
son model by making use of the Lang–Firsov and the gener-
alized Schrieffer–Wolf transformations and investigated by
means of the mean field method. The ground state proper-
ties, thermodynamics and electrodynamics were profoundly
examined. Their motive was to study some materials ex-
hibiting the mixed valence, it is, such substances which con-
tain ions of the same element differing by 2e concerning
their valence. There is a multitude of them, for example,
Ti4O7, NaxV2O5 or CsSbCl6 and TlF2, which are not su-
perconductors, but their ground state is charged-ordered. Be-
sides some superconductors such as A15, C15, V3Si, Nb3Ge
and cuprates such as the tungsten bronzes and the doped bis-
muthates (Ba1−xKxBiO3 and BaPb1−xBixO3) display the
existence of local pairs because all of them are character-
ized by the poor conductivity and narrow bands being the
result of the strong coupling between phonons and electrons
[14, 16, 17]. In these materials comes to the appearance of

so called bipolarons, it is, tightly bound electron pairs due
to strong coupling electrons with local lattice deformations
[10, 14, 18]. In order to investigate this, the mean field ap-
proach is invoked. As a result, one obtains two separated
subsystems corresponding to two bands. In each of the bands
electron pairs are present but in the f-band one has to deal
with the local pairs induced by the pair-exchange potential.
In this paper we follow the approach used in [10, 14–17] and
in fact we are interested in factors which can affect the crit-
ical temperature of such a system. For example, the effect
of the single-particle hopping is compared to that of the pair
hopping. Of course, both take place in the narrower band
and are treated as perturbations. The concept of pair hop-
ping has been used so far in a few papers [10, 14–20]. It is
believed that a Hamiltonian consisting of the single-electron
hopping and the pair hopping with negative coupling con-
stant shares many common features with the negative Hub-
bard model [19]. Here the appearance of the pair hopping
can be justified by the presence of the pair exchange po-
tential mixing Cooper pairs from the wider band with those
from the narrower one. The single-electron hopping in the
narrower band was not taken into account in [15–17] in con-
trast to the Coulomb repulsion in this band which was taken
exactly into account. This interaction turns out to be an ob-
stacle to get higher critical temperatures, which is in agree-
ment with our expectations and with results obtained in [16,
17]. In those papers this interaction was incorporated into
considerations both as the attraction and the repulsion. In
the attractive case the superconducting state is stable and
the critical temperature increases with the increase of the
strength of the attraction. The repulsive interaction lowers
this temperature to the zero at some critical repulsion and
the transition to the normal state in the presence of this in-
teraction is of the first order. The next factor to be inves-
tigated is the site-energy of f-electrons that can be under-
stood as the position of the f-level with respect to the bottom
of the d-band. As we shall see, on changing this position
there appear two peaks of higher critical temperature. The
stronger coupling constant of the pair-exchange potential is
the higher they are. They grow out from a level represent-
ing the pure BCS critical temperature. It is quite possible
that if the coupling constants of the pairing potential in the
d-band and of the pair exchange potential were larger than
those used in the calculations then the BCS critical temper-
ature would necessarily be higher and these peaks would
be so high as to get sufficiently high critical temperatures.
These two peaks are accompanied by the change of the av-
erage number of electrons per lattice site. If the chemical
potential is fixed in the middle of the d-band the average
number of d-electrons per lattice site remains equal to the
unity; however, this is not the case concerning the number
of f-electrons. Shifting the f-level from −∞ to ∞ one ob-
tains the decrease of the average number of f-electrons per
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lattice site from 2 to 0, respectively. In [10, 14, 16] the criti-
cal temperature has only one maximum not two and tends
to zero as the f-band is shifted to −∞ or ∞. This is so
because the authors assumed that there was no supercon-
ductivity on its own in the wider band. Superconductivity is
induced in both of the bands by the pair-exchange potential.
If this potential is discarded then superconductivity will be
turned off.

This paper is to ask the question what happens with the
critical temperature of a two-band fermion system with nar-
row bands if there appear some additional effects. Moreover,
one can look at the problem from a different point of view—
what is going to happen with this temperature if beside the
conventional BCS channel there appears a new mechanism
of superconductivity. It is quite possible that exotic super-
conductors behave so because more than one mechanism co-
operates. One of arguments for this could be the presence of
the untypical isotope effect pointing to the relevance of the
phonon-electron interactions in new materials. As is known
these materials display strong coupling between phonons
and electrons because they are very bad conductors in the
normal state and antiferromagnetic Mott insulators when un-
doped [11].

2 The Model

We are focused on the following Hamiltonian:

H0 =
∑

i �=j,σ

tdij d
∗
iσ djσ + (

Ed − μ
)∑

iσ

nd
iσ

− Ud
∑

i

nd
i+nd

i− − W
∑

i

(
d∗
i+d∗

i−fi−fi+ + h.c.
)

+ (
Ef − μ

)∑

iσ

n
f
iσ + Uf

∑

i

n
f
i+n

f
i−

+ V
∑

iσ

(
d∗
iσ fiσ + f ∗

iσ diσ

) + Udf
∑

iσσ ′
n

f
iσ nd

iσ ′ . (2.1)

The Hamiltonian describes a system of interacting d- and
f-electrons in a solid. d∗

iσ and diσ are the creation and anni-
hilation operators of an electron from the d-band (the wider
one) whereas f ∗

iσ and fiσ concern electrons from the nar-
rower f one, respectively. σ denotes the spin of electrons
and i and j refer to lattice sites. nd

iσ and n
f
iσ are the number

operators of both kinds of electron. The dispersion of the f
band was suppressed. Ed and Ef refer to the site energies
of both kinds of electron, respectively. V is the conventional
on-site hybridization and the parameters Ud > 0, Uf and
Udf are the effective coupling constants of the Coulomb in-
teractions between electrons of the same type and the differ-
ent ones, respectively. The interaction between d-electrons

is assumed to be attractive leading in this way to appear-
ance of superconductivity in the system. Two remaining
ones can be treated arbitrarily, however, it is assumed now
that f-electrons repel each other. There is another channel
to introduce superconductivity to the system, namely via an
on-site exchange of pairs (the pair-hybridization) with op-
posite spins between bands. The coupling constant of this
exchange potential was assumed to be negative. The Hamil-
tonian (2.1) can be substantiated by the existence of strong
local interactions between phonons and electrons in some
materials [10, 11, 14]. Such interactions lead to forming po-
larons which in turn can attract each other. These interacting
polarons can be bound into so-called bipolarons. Anyway,
superconductivity can be caused by on-site interactions of
local phonons with local electrons and its emerging depends
really on the magnitude of Coulomb and electron–phonon
interactions.

In this paper we will limit ourselves to a simpler case,
namely the interband Coulomb interaction and the single-
particle hybridization ones in the Hamiltonian above will
be dropped. In [16] the interband Coulomb repulsion was
taken into account. It turned out that this interaction reduces
the superconducting phase with coexisting local pairs and
Cooper pairs. Additionally, the following perturbations will
be taken into account separately:

Tsf =
∑

i �=j,σ

t sf
ij f ∗

iσ fjσ ,

Tpf =
∑

i �=j

t
pf
ij f ∗

i+f ∗
i−fj−fj+.

The first one stands for the hopping of single f-electrons and
provides the system with the dispersion of f-electrons mak-
ing the f-band have the finite width. The second formula is
the hopping of pairs of f-electrons. We are interested in the
influence of each of the type of the hopping on the criti-
cal temperature in the investigated system. Therefore, two
Hamiltonians are considered in the paper:

H1 = Tsf + H0 (2.2)

and

H2 = Tpf + H0. (2.3)

Both kinds of hopping are restricted to the nearest-neighbor
case. Additionally, the lattice is assumed to be two-dimen-
sional and the symmetry of the lattice is square. The Hamil-
tonian H0 after passing to the momentum space and making
use of the so-called BCS approximation in the case of d-
electrons takes the following mean field form:

H0 red = Hd + Hf + LC (2.4)
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where

Hd =
∑

k

[
ξd

k

(
nd

k+ + nd
−k−

)

− �̃
(
d∗

k+d∗
−k− + d−k−dk+

)]
, (2.5)

Hf =
∑

i

[
ξf

(
n

f
i+ + n

f
i−

) + Uf n
f
i+n

f
i−

− �
(
f ∗

i+f ∗
i− + fi−fi+

)]
(2.6)

and

LC = L
�2

Ud
+ 2L

�ρ

W
.

We have obtained the Hamiltonians describing two indepen-
dent subsystems of d- and f-electrons with the following or-
der parameters:

�̃ = � + ρ, (2.7)

� = Ud

L

∑

k

〈
d∗

k+d∗
−k−

〉
Hd = Ud

L

∑

k

〈d−k−dk+〉Hd , (2.8)

� = W

L

∑

k

〈
d∗

k+d∗
−k−

〉
Hd = W

L

∑

k

〈d−k−dk+〉Hd (2.9)

and

ρ = W
〈
f ∗

i+f ∗
i−

〉
Hf = W 〈fi−fi+〉Hf . (2.10)

L is the number of lattice sites. Hamiltonian Hd acts in the
momentum space and describes the conventional BCS sys-
tem whereas Hf concerns the real space and in fact is the
sum of on-site contributions. It is worth noting that taking
into account of the Coulomb repulsion between f-electrons
is more important than the corresponding one in the wider
band due to stronger screening effects in it. The averages in
the expressions above are taken over the grand canonical en-
semble for the corresponding Hamiltonian. The dispersion
relation for the d-band is εd

k = −2td(coskx + cosky) for
tdij = −td , thus ξd

k = Ed + εd
k − μ, whereas ξf = Ef − μ.

The problem is now reduced to two separate diagonal-
izations of Hd = ∑

k Hd
k and Hf = ∑

i H
f
i and is quite

easy to solve. We furnish the reader with the list of eigenvec-
tors and eigenvalues of H

f
i below only due to two reasons,

namely, the solution for Hd
k is widely known besides we will

utilize the results below in the perturbation procedure in this
paper. Let M

f
i be the subspace of the ith lattice site spanned

by the set of the following vectors: |00〉i , |+0〉i , |0−〉i and
|+−〉i , which can be written as (f ∗

i+)ni (f ∗
i−)mi |00〉i with

ni,mi = 0,1, then

Eigenvector Eigenvalue

|+ 〉i := |+0〉i ξf

|− 〉i := |0−〉i ξf

|E〉i := u|+−〉i − vi |00〉i ξf + Uf

2 + E

|G〉i := u|00〉i + vi |+−〉i ξf + Uf

2 − E

The eigenvectors are the linear combinations of these

vectors, u = 1
2 (1 + ξf + Uf

2
E

), v = 1
2 (1 − ξf + Uf

2
E

) where E =√
(ξf + Uf

2 )2 + �
2
. At this stage both f-electrons them-

selves and pairs of them are localized on lattice sites and
cannot hop from one site to others. This will be possible
after taking these effects into account in the form of pertur-
bations.

3 The Free Energy and the Gap Equations

Having found the spectrum of the mean field Hamiltonian
(2.4) one can now write down the statistical sum and the gap
equations completed with the equation for the average num-
ber of electrons per lattice site. The statistical sum written in
terms of all the eigenvalues reads

Z = e−βLCe−βLξf

2L
(
1 + e−β Uf

2 coshβE
)L

×
∏

k

e−βξd
k cosh2 β

Ek

2
. (3.1)

The free energy per lattice site is

F0

L
= −(βL)−1 lnZ

= C + ξf − β−1 ln 2
(
1 + e−β Uf

2 coshβE
)

+ L−1
∑

k

ξd
k − 2(Lβ)−1

∑

k

ln coshβ
Ek

2
, (3.2)

where Ek =
√

ξd
k

2 + �̃2. The free energy per lattice site is
very useful for determining the order parameters and the
chemical potential. It suffices to minimize the free energy
per lattice site with respect to these parameters. As a result
one obtains the following system of three equations:

L−1 ∂F0

∂ρ
= 0 ⇒ � = W

2

�̃

L

∑

k

tanhβ
Ek
2

Ek
,

L−1 ∂F0

∂�
= 0 ⇒ � = Ud

2

�̃

L

∑

k

tanhβ
Ek
2

Ek
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and

L−1 ∂F0

∂�
= 0 ⇒ ρ = W�

2E

e−β Uf

2 sinhβE

1 + e−β Uf

2 coshβE

. (3.3)

The set of these equations is to be completed with the equa-
tion for the average number of electrons per lattice site

− L−1 ∂F0

∂μ
= n ⇒

n = 1 − ξf + Uf

2

E

e−β Uf

2 sinhβE

1 + e−β Uf

2 coshβE

+ L−1
∑

k

(
1 − ξd

k

Ek
tanhβ

Ek

2

)
= nf + nd,

with

nf = 1 − ξf + Uf

2

E

e−β Uf

2 sinhβE

1 + e−β Uf

2 coshβE

,

where nf is the average number of f-electrons per lattice
site and nd denotes the average number of d-electrons per
lattice site. The equations above are equivalent to those ob-

tained in [10, 14–17] due to the linear relation � = Ud

W
�.

Note that the equation for ρ is modified by the presence of
the Coulomb repulsion Uf , which is consistent with the cor-
responding equation, e.g. in [16]. In that paper the pair hop-
ping was taken into account in the equation for ρ as well.
Here this factor will be introduced via perturbation theory.

The first two equations above after passing to the thermo-
dynamic limit read

� = W

2

�̃

De

∫ De−μ

−μ

tanhβ E
2

E
dξd, (3.4)

and

� = Ud

2

�̃

De

∫ De−μ

−μ

tanhβ E
2

E
dξd, (3.5)

whereas the average number of electrons per lattice site is

n = 1 − ξf + Uf

2

E

e−β Uf

2 sinhβE

1 + e−β Uf

2 coshβE

+ 1

De

∫ De−μ

−μ

(
1 − ξd

E
tanhβ

E

2

)
dξd . (3.6)

De is the bandwidth of the d-band while E =
√

ξd2 + �̃2.
The density of states (DOS) in the d-band was assumed to

be the rectangular one, it is,

ρ
(
εd

k

) =
{

1
De , εd

k ∈ (0,De);
0, otherwise.

This kind of DOS is very frequently used in order to ap-
proximate the exact DOS of 2D square lattice systems. After
some simple algebra one obtains the following equation:

2De

(Ud + W 2

2E
F (β,Uf ,�))

=
∫ De−μ

−μ

tanh 1
2β

√
ξd2 + �̃2

√
ξd2 + �̃2

dξd,

where F (β,Uf ,�) = e
−β Uf

2 sinhβE

1+e
−β Uf

2 coshβE

. Now having found

the equations above one can determine the critical tempera-
ture. Putting ρ = � = � = 0 one arrives at the equation for
the inverse critical temperature βc = 1

kBTc
, namely

2De

(Ud + W 2

2|ξf + Uf

2 |
F (βc,Uf ,� = 0))

=
∫ De−μ

−μ

tanh 1
2βcξ

d

ξd
dξd (3.7)

and the equation for n

n = 2 − ξf + Uf

2

|ξf + Uf

2 |
F

(
βc,U

f ,� = 0
)

− 2

βcDe
ln

cosh 1
2βc(De − μ)

cosh 1
2βcμ

. (3.8)

Equation (3.7) suggests the effective increase of the cou-
pling between d-electrons due to the presence of localized
pairs of f-electrons. This should lead to elevation of the crit-
ical temperature as we shall see below.

For Ef = μ = De
2 both equations reduce to

2De

(Ud + W 2

Uf F (βc,Uf ,� = 0))
=

∫ De
2

− De
2

tanh 1
2βcξ

d

ξd
dξd

and

n = 2 − F
(
βc,U

f ,� = 0
)
,

with F (βc,U
f ,� = 0) = 1−e−βcUf

3+e−βcUf . Taking into account

two opposite limits βcU
f 
 1 (large Uf and low Tc) and

βcU
f � 1 (small Uf and high Tc), in the former case one
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gets

2De

(Ud + W 2

Uf ( 1
3 − 4

9e−βcUf
))

=
∫ De

2

− De
2

tanh 1
2βcξ

d

ξd
dξd

and n = 5
3 + 4

9e−βcU
f

. If Uf and βc
De
2 get infinite then the

critical temperature takes the well known pure BCS result

kBTc ≈ 1.13 De
2 e

− De
Ud while n = 5

3 . It means that the d-band
is half-filled while the f-band is two-thirds full. Of course
such a strong repulsion makes the creation of local pairs
in the f-band impossible. f-orbitals cannot be occupied by
pairs of f-electrons with opposite spins but they are empty
or singly occupied. In turn, if the investigated system is at
low temperatures but Uf is finite the approximated solution
is

kBTc ≈ 1.13
De

2
exp

(
− De

Ud + W 2

3Uf

)
,

with the proviso that βc
De
2 is still large. Such a critical tem-

perature is higher than the conventional BCS result. In the
βcU

f � 1 case the equation for this temperature reads

2De

(Ud + W 2βc

4 )
=

∫ De
2

− De
2

tanh 1
2βcξ

d

ξd
dξd

and the average number of electrons per lattice site is

n = 2 − βcU
f

4
.

Thus, in the case of the weak Coulomb repulsion in the f-
band one observes the average number of electrons per lat-
tice site to be a little bit smaller than n = 2 and the equation
for the inverse critical temperature can be written as

1

βc

= 1.13
De

2
exp

(
− De

Ud + W 2βc

4

)
,

if βc
De
2 is sufficiently large. One can try to solve the equa-

tion above by making some simple approximations. First,

let us assume that W 2βc

4 � Ud then one can apply the ex-
pansion exp (− De

Ud+ W2βc
4

) ≈ exp (− De
Ud )(1+ De

4 ( W
Ud )2βc). Of

course, W
Ud � 1 is assumed as well. The approximated solu-

tion reads

kBTc ≈ 1.13De

4
e
− De

Ud

(
1 +

√

1 + 2

1.13

(
W

Ud

)2

e
De
Ud

)

and leads to the higher critical temperature than the pure
BCS one. If W and Ud are much larger in comparison to De
then the expression De

Ud+ W2βc
4

can be regarded as small. In

Fig. 1 The dependence of the critical temperature on the coupling con-
stant W for some values of the Coulomb repulsion is depicted. It is seen
that the Coulomb repulsion reduces the critical temperature to the BCS
value, which is equal to 2.217 K for the parameters used in the paper

this case the expansion exp (− De

Ud+ W2βc
4

) ≈ 1 − De

Ud+ W2βc
4

is

helpful. In terms of that the critical temperature is

kBTc ≈ 1

2

1.13De

1 + 2.26De2

W 2

.

This solution points to the higher critical temperature than
in the conventional BCS theory as well.

It follows from the considerations above that the pair
hybridization increases the critical temperature what is in
agreement with the result obtained in [10, 14–17]. Now we
can additionally ask about the influence of the Coulomb re-
pulsion on this temperature. This task was achieved numeri-
cally for the following set of parameters: De = 0.05 eV and
Ud = 0.01 eV. Moreover, the chemical potential has been
fixed in the middle of the d-band, it is μ = De

2 . The param-
eters used in the calculations give the coupling constant of

BCS pairing Ud

De = 0.2 and the pure BCS critical tempera-
ture Tc = 2.217 K, thus one has to do with a superconductor
in the weak coupling regime. In Fig. 1 the dependence of
the critical temperature on the coupling W for different val-
ues of the Coulomb repulsion Uf is depicted. The pair hy-
bridization is very effective in increasing the critical temper-
ature but only for weak repulsion between f-electrons. One
observes quite strongly increasing functions Tc(W) from the
pure BCS value to quite high temperatures; However, if the
repulsion is much stronger one can notice curves represent-
ing functions that are very weakly increasing. In such a case
the formation of local electron pairs is not energetically fa-
vorable and lattice sites are either empty or occupied by sin-
gle f-electrons that cannot be transferred to the d-band due
to the lack of a proper channel.

An interesting question is how the location of the f-band
with respect to the d-band affects the critical temperature.
The same values of Ud , De and μ has been used while
Uf = 0.1 eV. It turns out that the critical temperature can
significantly be affected by one. This is shown in Fig. 2 for
three values of W . For W = 0.001 eV the change of Tc with
respect to the BCS value that equals TcBCS = 2.217 K is
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Fig. 2 The dependence of the critical temperature on the position of
the f-band with respect to the bottom of the d-band is depicted. There
are two peaks at two values of this parameter. The first maximum corre-
sponds to the f-band located below the bottom of the d-band while the
second one to the f-band lying very close to the middle of the d-band

Fig. 3 The average number of electrons per lattice site versus the po-
sition of the f-band with respect to the bottom of the d-band. Two
steps are visible in the figure. These steps correspond to the inner steep
slopes of two peaks seen on Fig. 2

very poor. There are two low maxima at Ef = −0.08 eV
and Ef = 0.026 eV. Shifting the f-level from −∞ upwards
one gets the gradual increase of Tc from the BCS value to
Tc = 2.227 K at Ef = −0.07 eV and the rapid fall to the
BCS value again. Further shifting does not change this up to
the point Ef = 0.024 eV where Tc jumps to the value Tc =
2.228 K to drop to the BCS value again. Note that d-band
has the bandwidth represented by the range 〈0 eV,0.05 eV〉.
For the larger value W = 0.005 eV the jumps are visibly
higher and take place at the same points. The critical tem-
peratures reach Tc = 2.477 K and Tc = 2.493 K, respec-
tively. Even higher values are reached if W = 0.01 eV.
These are 3.363 K and 3.434 K for Ef = −0.08 eV and
Ef = 0.027 eV. One can notice that the critical tempera-
ture may be significantly elevated if W is sufficiently large
and the f-band lies either below the down edge of the d-
band or slightly above the center of this band. In Fig. 3 the
dependence of the average number of electrons per lattice
site for W = 0.001 eV is depicted. There is no need to de-
pict the rest of cases because they look likewise. As one can
see there are two rapid drops corresponding to two jumps of
the critical temperature. When the average number of elec-
trons drops from 3 to 2 the critical temperature falls from

one of two local maximal values to the BCS one. In turn,
in the case of the rapid change of this number from 2 to 1
this temperature jumps from the BCS value to the second
maximal value. Shifting the f-level further upwards one ob-
tains the constant value of the average number of electrons
corresponding to the decreasing critical temperature to the
BCS value. It is interesting that the value n = 2 is taken
for Ef ∈ (−0.08 eV,0.024 eV〉 (half-filled case) and for
Ef = 0.025 eV one obtains n ≈ 1.67, which agrees with
the analytic result for βcU

f 
 1. For n = 2 the critical
temperature is equal to the BCS value. For these values of
Ef leading to much higher critical temperatures supercon-
ductivity is dominated by local electron pairs whereas out-
side these regions the conventional BCS mechanism is priv-
ileged. Note that in [15–17] the authors obtained the BCS
result for Uf = 0 and Uf = −∞ on shifting the f-level up-
wards on the energy scale as well.

4 The Effect of Two Kinds of Hopping

In the preceding section the free energy per lattice site has
been derived. In this one we would like to investigate the
effect of two perturbations separately. These are the hopping
of f-electrons and the hopping of pairs of these electrons
which are expressed by Tsf and Tpf. Following [21] one can
formulate the total free energy as the expansion up to the
second order, namely

F = F0 + 〈
H ′〉

0 + β

2

〈
H ′〉2

0 − 1

2

〈∫ β

0
ewH0H ′e−wH0H ′ dw

〉

0
.

(4.1)

H ′ stands for arbitral perturbation. Note that actually the
calculations will be made in the subspace of f-electrons be-
cause the operators representing two types of hopping act
in this subspace only. Having in mind this remark one can
write the unperturbed free energy F

f

0 down

F
f

0 = Tr e−βHf = Lξf − β−1L ln 2
(
1 + e−β Uf

2 coshβE
)
.

(4.2)

The Hamiltonian Hf acts in
⊗L

i=1 M
f
i spanned by the vec-

tors (f ∗
1+)n1(f ∗

1−)m1 |00〉1 ⊗ · · · ⊗ (f ∗
L+)nL(f ∗

L−)mL |00〉L.
The periodic boundary conditions were adopted here. In or-
der to make further calculations let us define the density ma-
trix

ρf :=
L⊗

i=1

ρ
f
i , (4.3)
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where

ρ
f
i := e−βξf

Zf

(|+〉i i〈+| + |−〉i i〈−|)

+ e−β(ξf + Uf

2 +E)

Zf
|E〉i i

〈
E|

+ e−β(ξf + Uf

2 −E)

Zf
|G〉

i i
〈G|

with

Zf := 2e−βξf (
1 + e−β Uf

2 coshβE
)
.

The symbol |A〉〈A| denotes the projection operator on a
state |A〉. Note that Trρf = ∏L

i=1 Trρf
i = 1. Next, if one

looks at the structure of the operators Tsf and Tpf then it will
be obvious that they connect two neighboring sites i and
i + 1. Let us write these operators in the following forms:

Tsf = −t sf
∑

σ

L∑

i=1

(
f ∗

iσ fi+1σ + f ∗
i+1σ fiσ

)

and

Tpf = −tpf
L∑

i=1

(
f ∗

i+f ∗
i−fi+1−fi+1+ + f ∗

i+1+f ∗
i+1−fi−fi+

)
.

Now let us calculate the correction to the free energy due
to the pair hopping up to the first order. We deal with the
2D-system and in fact all operators should be denoted with
a double index whereas the sums should be double. How-
ever, for simplicity the abbreviated notation was used. More
details are included in Appendix A. Thus

〈Tpf〉Hd = −tpf
L∑

i=1

Trρf
(
f ∗

i+f ∗
i−fi+1−fi+1+

+ f ∗
i+1+f ∗

i+1−fi−fi+
)

= −tpf
L∑

i=1

Trρf
i ⊗ ρ

f

i+1

(
f ∗

i+f ∗
i−fi+1−fi+1+

+ f ∗
i+1+f ∗

i+1−fi−fi+
)
. (4.4)

Note that ρ
f
i ⊗ ρ

f

i+1 was left under the trace only since the
rest of the factors were traced out to give the unity. This
operator takes the following form:

ρ
f
i ⊗ ρ

f

i+1 = e−2βξf

Zf 2

[|+〉i ⊗ |+〉i+1i+1〈+| ⊗ i〈+|
+ |+〉i ⊗ |−〉i+1i+1〈−| ⊗ i〈+|
+ e−β( Uf

2 −E)|+〉i ⊗ |G〉i+1i+1〈G| ⊗ i〈+|

+ e−β( Uf

2 +E)|+〉i ⊗ |E〉i+1i+1〈E| ⊗ i〈+|
+ |−〉i ⊗ |+〉i+1i+1〈+| ⊗ i〈−|
+ |−〉i ⊗ |−〉i+1i+1〈−| ⊗ i〈−|
+ e−β( Uf

2 −E)|−〉i ⊗ |G〉i+1i+1〈G| ⊗ i〈−|
+ e−β( Uf

2 +E)|−〉i ⊗ |E〉i+1i+1〈E| ⊗ i〈−|
+ e−β( Uf

2 −E)|G〉i ⊗ |+〉i+1i+1〈+| ⊗ i〈G|
+ e−β( Uf

2 −E)|G〉i ⊗ |−〉i+1i+1〈−| ⊗ i〈G|
+ e−2β( Uf

2 −E)|G〉i ⊗ |G〉i+1i+1〈G| ⊗ i〈G|
+ e−βUf |G〉i ⊗ |E〉i+1i+1〈E| ⊗ i〈G|
+ e−β( Uf

2 +E)|E〉i ⊗ |+〉i+1i+1〈+| ⊗ i〈E|
+ e−β( Uf

2 +E)|E〉i ⊗ |−〉i+1i+1〈−| ⊗ i〈E|
+ e−βUf |E〉i ⊗ |G〉i+1i+1〈G| ⊗ i〈E|
+ e−2β( Uf

2 +E)|E〉i ⊗ |E〉i+1i+1〈E| ⊗ i〈E|].
Finally, making use of the expression above one yields

corpf = 〈Tpf〉Hd = −tpfzL
(
2u2v2fp1 + (

u2 − v2)2
fp2

)
,

(4.5)

where z is the coordination number which for a 2D-system
equals 4 and

fp1 := 1

4

e−βUf
cosh 2βE

Mf 2
, fp2 := 1

4

e−βUf

Mf 2
,

Mf := 1 + e−β Uf

2 coshβE.

Details of the calculations are in Appendix A.
The first order corrections due to the hopping of single

particles and 〈Tsf〉2
Hd vanish and there is a need to find next

terms. We are going to focus on the second order which is
quite complex and details of the calculation are presented in
Appendix B. The final result is

corsf = −1

2

〈∫ β

0
ewHf

Tsfe
−wHf

Tsf dw

〉

Hd

= −t2
sfzL

[
4u2v2

(
fs1

Uf − 2E
+ 2

fs2

E
− fs3

Uf + 2E

)

+ 2
(
u2 − v2)2

(
fs4

Uf
+ βfs5

)]
, (4.6)

where

fs1 := 1

4

1 − e−2β( Uf

2 −E)

Mf 2
, fs2 := 1

4

e−β Uf

2 sinhβE

Mf 2
,
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fs3 := 1

4

1 − e−βUf

Mf 2
,

fs4 := 1

4

−1 + e−2β( Uf

2 +E)

Mf 2
, fs5 := 1

4

e−β Uf

2 coshβE

Mf 2
.

Now having found the corrections corpf and corsf one can
incorporate them into the free energy of the f-subsystem per
lattice site. It yields

FTp

L
= Fd

0

L
+ F

f
p

L
+ C = Fd

0

L
+ F

f

0

L
+ corpf

L
+ C

and

FT s

L
= Fd

0

L
+ F

f
s

L
+ C = Fd

0

L
+ F

f

0

L
+ corsf

L
+ C,

where
Fd

0
L

= L−1 ∑
k ξd

k − 2(Lβ)−1 ∑
k ln coshβ

Ek
2 . In or-

der to find the equation for the critical temperature for both
cases one has to determine the gaps equations from the con-
ditions below:

∂

∂�

FT n

L
= 0,

∂

∂ρ

FT n

L
= 0,

∂

∂�

FT n

L
= 0,

where n = p, s.

In fact the first two of them are exactly the same as in Sect. 3;
however, the third one is transformed to a form with correc-
tion terms and after some algebra it leads to the following
equation for βc:

2De

(Ud + W 2

2|ξf + Uf

2 |
F (βc,Uf ,� = 0) − W 2

2 ˜cornf |�=0)

=
∫ De−μ

−μ

tanh 1
2βcξ

d

ξd
dξd, (4.7)

where

˜corpf|�=0 ≈ −2

9

tpfz

Uf 2
, (4.8)

˜corsf|�=0 ≈ −2

9

t sf2
z

Uf 3

(
2 − 2βcU

f + βc
2Uf 2)

≈ −2

9

t sf2
z

Uf
βc

2. (4.9)

The two expressions above have been obtained for Ef =
μ = De

2 and βcUf 
 1. The reader interested in details of
the calculations is referred to Appendix C. Equation (4.7)
is solved numerically for Ef = μ = De

2 with making use
of (4.8) and (4.9). The bandwidth is De = 0.05 eV while
Ud = 0.01 eV, Uf = 1 eV and W = 0.005 eV. It is obvious

Fig. 4 The dependence of the critical temperature on the pair hopping
integral tpf for some values of the Coulomb repulsion is depicted. It
is seen that the Coulomb repulsion hampers the increase of the critical
temperature from the BCS value which is equal to 2.217 K for the pa-
rameters used in the paper. This kind of the hopping is not too efficient
in increasing this temperature

Fig. 5 The dependence of the critical temperature on the single-po-
laron hopping integral t sf for some values of the Coulomb repulsion is
depicted. It is seen that the Coulomb repulsion weakens the increase of
the critical temperature from the BCS value which is equal to 2.217 K
for the parameters used in the paper. However, this kind of the hopping
is far more efficient in rising this temperature than the pair hopping

from Figs. 4 and 5 that the hopping of bipolarons is not as
effective in the increase of the critical temperature as that is
in the case of the hopping of single polarons. One can no-
tice the effect of the Coulomb repulsion on both cases. If
it is sufficiently strong the lines represent functions of hop-
ping integrals which are very weakly increasing. This espe-
cially concerns the system with the pair hopping. But even if
this interaction is significantly weaker one observes a mod-
est effect of the hopping of bipolarons on the increase of the
critical temperature despite the fact that this hopping is in-
corporated as the correction of the first order. Of course, in
[17] it was found that the pair hopping increased the critical
temperature what is in agreement with the results obtained
in this paper. The next figures, Figs. 6 and 7, show the de-
pendence of the critical temperatures on the exchange pair
coupling constant for several values of the hopping integrals.
Here the influence of the hopping of local pairs on the crit-
ical temperature is found to be quite poor in contrast to the
single-polaron hopping that turns out to be much more ef-
ficient in elevating this temperature. A possible explanation
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Fig. 6 The dependence of the critical temperature on the coupling con-
stant W for some values of the pair hopping integral tpf is depicted. The
critical temperature evidently increases with W , however, the hopping
of pairs exerts rather poor effect on this temperature

Fig. 7 The dependence of the critical temperature on the coupling con-
stant W for some values of the single-polaron hopping integral t sf is
depicted. The hopping of single polarons as well as the pair-exchange
potential significantly increase the critical temperature

of this can be the magnitude of the effective mass which is
much larger in the case of bipolarons and leads to smaller
bandwidth than in the case of single polarons.

Magnetic correlations caused by the single-electron hop-
ping stand for a separate problem. It is widely known that
the Hubbard model in the limit of strong on-site Coulomb
repulsion displays the antiferromagnetic correlations which
lead to the long-range antiferromagnetic order in a half-
filled band. In our case these correlations are present as
well and compete with superconductivity in the narrower
band. They become especially important when Uf gets suf-
ficiently strong to significantly weaken superconductivity.
Electron pairs are broken in the f-band and there appears the
tendency that f-orbitals at adjacent lattice sites are occupied
by single electrons with opposite spins. Additionally, if the
system is half-filled then superconductivity in the f-band is
completely suppressed to give way to the antiferromagnetic
order. In such a case in the wider band the BCS supercon-
ductivity can survive while superconductivity in the f-band
due to the pair hybridization and pair hopping is absent. The
BCS interaction in the wider band is absent in earlier papers
[10, 14–17] and in such a case the antiferromagnetic corre-
lations would destroy superconductivity in the system. This
issue was briefly analyzed in [17] as well.

Of course, it would be the best to investigate the coexis-
tence of two kinds of hopping in the system, however, this is
a much more complicated task. Besides, dealing with them
separately one can make some comparison between them.
Taking into account both of them acting together in the sys-
tem will be a subject of future investigations.

5 Conclusions

The influence of several factors on the critical tempera-
ture of a two-band superconducting system with BCS pairs
of d-electrons and local f-electron pairs was investigated.
Such local pairs called bipolarons as well were induced in
the f-electron band via the pair-exchange potential com-
ing from an interaction between local phonons and elec-
trons from both bands. These factors were as follows: the
local Coulomb repulsion between f-electrons, the position
of the f-band with respect to the bottom of the d-band, the
hopping of single polarons and the hopping of their pairs.
The last two were investigated independently. It turned out
that in all cases the Coulomb repulsion in the f-band low-
ered the critical temperature and acted as a pair-breaker in
the f-band, as was very intuitive. If this interaction is suf-
ficiently strong then it will prevent polarons from form-
ing local pairs. Additionally, if the Coulomb interaction is
stronger than the value of the bandwidth of the f-band and
the system is half-filled, then f-orbitals have the tendency
to be occupied by single f-electrons. When the f-orbitals
become occupied in that way superconductivity can sur-
vive in the d-band with the pure BCS critical temperature.
There can be no charge transfer in the form of electron
pairs from the f-band due to too strong Coulomb repul-
sion.

The effect of both kinds of hopping was investigated by
making use of perturbation theory. It was done for both
of them separately. The conventional hopping of single po-
larons proved to be much more efficient in making the crit-
ical temperature higher than the pair-hopping. This can be
due to the higher effective mass of local pairs. The next step
in investigations will be taking into account the interplay of
two kinds of hopping and the influence of the position of the
f-band with respect to the bottom of the d-band.

The effect of the position of the f-band on the critical
temperature proved to be very interesting on its own. At two
values of this parameter the critical temperature has a jump.
These jumps are high if the coupling constant of the pair ex-
change potential is sufficiently large. This can be described
as follows: the critical temperature tends asymptotically to
the BCS value when the f-band is shifted towards −∞ but
as the f-band is getting closer to the bottom of the d-band
this temperature becomes higher and higher up to the mo-
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ment when the first local maximum is reached. The criti-
cal temperature drops rapidly to get the BCS value again.
This value is retained if the position of the f-level is be-
low the center of the d-band. If this level gets the center
of the d-band the critical temperature jumps. Further shift-
ing the f-level to ∞ brings about the decrease of the crit-
ical temperature to the BCS value. This purely chemical
process can lead to quite high values of the critical tem-
peratures and is accompanied by the change of the aver-
age number of f-electrons. The investigated system can be
treated as a concentrated alloy or a compound in which f-
electrons come from atoms of an element introduced into
that.

The paper deals with the critical temperature and pos-
sible factors influencing it. Other properties of this system
are certainly affected by these factors as well. The ground
state, the energetic gaps, thermodynamics and electromag-
netic properties were already investigated to a large extent
[15–17]. However, it could be worthwhile to examine them
in the presence of both hoppings. The next question is if
there exist materials displaying this untypical behavior of
the critical temperature with reference to the position of the
f-level. The papers [15–17] point clearly to the doped bis-
muthates Ba1−xKxBiO3 and BaPb1−xBixO3. These chemi-
cal complexes possess a pseudogap in the excitation spec-
trum that can be observed in photoemission experiments
[22–25]. It is widely accepted that the presence of incoher-
ent electron pairs above the critical temperature leads to such
a pseudogap. The pseudogap appears at some temperature
higher than the critical temperature calculated in the frame
of the mean field method. It happens that way since the pro-
cess of pairing in unconventional superconductors can be
independent of the phase coherence unlike in conventional
ones. In the papers [17, 26] the Kosterlitz–Thouless theory
was invoked in order to incorporate this pairing tempera-
ture to the considerations. Undoubtedly, the system investi-
gated in this paper is a BCS superconductor with an addi-
tional mechanism leading to higher critical temperatures. It
is quite possible that such a mixed mechanism is responsible
for higher values of the transition temperature. Note that if
the f-level is far from the d-band at energetic scale the be-
havior of the investigated system is dominated by the BCS
mechanism and the contribution of coherent local pairs is
poor. The condensate of local pairs is much more important
in the regions of two peaks and is responsible for the eleva-
tion of Tc .
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tion, and reproduction in any medium, provided the original author(s)
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Appendix A

Our goal is to derive the expression (4.5). To this end let us
start with (4.4),

corpf = −tpf
L∑

i=1

Trρf
i ⊗ ρ

f

i+1

(
f ∗

i+f ∗
i−fi+1−fi+1+

+ f ∗
i+1+f ∗

i+1−fi−fi+
)

= −tpf e
−2βξf

Zf 2

L∑

i=1

Tr
[(

e−2β( Uf

2 −E)|G〉i

⊗ |G〉i+1i+1〈G| ⊗ i〈G|
+ e−βUf |G〉i ⊗ |E〉i+1i+1〈E| ⊗ i〈G|
+ e−βUf |E〉i ⊗ |G〉i+1i+1〈G| ⊗ i〈E|
+ e−2β( Uf

2 +E)|E〉i ⊗ |E〉i+1i+1〈E| ⊗ i〈E|)

× (
f ∗

i+f ∗
i−fi+1−fi+1+ + f ∗

i+1+f ∗
i+1−fi−fi+

)]

= −tpf e
−2βξf

Zf 2

L∑

i=1

Tr
[(

e−2β( Uf

2 −E)uv
(|G〉i

⊗ |G〉i+1i+1〈− + | ⊗ i〈00|
+ |G〉i ⊗ |G〉i+1i+1〈00| ⊗ i〈− + |)

+ e−βUf (−v2|G〉i ⊗ |E〉i+1i+1〈− + | ⊗ i〈00|
+ u2|G〉i ⊗ |E〉i+1i+1〈00| ⊗ i〈− + |)

+ e−βUf (
u2|E〉i ⊗ |G〉i+1i+1〈− + | ⊗ i〈00|

− v2|E〉i ⊗ |G〉i+1i+1〈00| ⊗ i〈− + |)

− e−2β( Uf

2 +E)vu
(|E〉i ⊗ |E〉i+1i+1〈− + |

⊗ i〈00| + |E〉i ⊗ |E〉i+1i+1〈00| ⊗ i〈− + |)].
One should note that the sum in expression above is an ab-
breviation. This means we have a summation over all neigh-
boring lattice sites. In general in a n-dimensional system ev-
ery lattice site has z = 2n closest neighbors. Here, for the
two-dimensional system one deals with a double sum. For a
2-D system one has

Tsf = −t sf
∑

σ

√
L∑

i=1

√
L∑

j=1

(
f ∗

jiσ fji+1σ + f ∗
ji+1σ fjiσ

+ f ∗
jiσ fj+1iσ + f ∗

j+1iσ fjiσ

)

and

Tpf = −tpf

√
L∑

i=1

√
L∑

j=1

(
f ∗

ji+f ∗
ji−fji+1−fji+1+
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+ f ∗
ji+1+f ∗

ji+1−fji−fji+

+ f ∗
ji+f ∗

ji−fj+1i−fj+1i+ + f ∗
j+1i+f ∗

j+1i−fji−fji+
)
,

where every lattice site has a double index. There are
8
√

L
√

L terms in the former sum and 4
√

L
√

L in the lat-
ter one. Of course, the density matrix for a given lattice site
is denoted with double index as well. If all of this is taken
into account then after performing the trace one will arrive
at (4.5).

Appendix B

The correction due to the single polaron hopping is more dif-
ficult to calculate. This is so since the first order correction
vanishes and one has to find the second order terms. To this
end let us consider the problem at more general level. Sup-
pose the unperturbed Hamiltonian can be decomposed to the
following form: H0 = ∑k

n=1 EnPn, En is the nth eigenvalue
of H0 and Pn = |n〉〈n| is the projector on the eigenvector
|n〉. It is easy to show that ewH0 = ∑k

n=1 ewEnPn, where w

is an arbitral parameter. Thus

ewH0H ′e−wH0 =
k∑

n=1

k∑

m=1

ew(En−Em)|n〉〈n|H ′|m〉〈m|

and making use of the expression above one obtains

〈∫ β

0
ewH0H ′e−wH0H ′ dw

〉

0

=
∫ β

0
dw Tr

[
k∑

l=1

e−βEl

∑k
s=1 e−βEs

|l〉〈l|

×
k∑

n=1

k∑

m=1

ew(En−Em)|n〉〈n|H ′|m〉〈m|H ′
]
.

Now after performing the trace and the integration one gets

〈∫ β

0
ewH0H ′e−wH0H ′ dw

〉

0

=
k∑

n=1

k∑

m=1

eβ(En−Em) − 1

En − Em

e−βEn

∑k
s=1 e−βEs

∣∣〈n|H ′|m〉∣∣2
.

(B.1)

The formula (B.1) will serve us to find the correction due to
the single polaron hopping H ′ = Tsf. To this end let us find
the matrix elements of the operator Tsfi := ∑

σ (f ∗
iσ fi+1σ +

f ∗
i+1σ fiσ ). The same remarks as those made for Tpf concern

this case. In fact the averaging 〈〉0 is reduced to the average
over ρ

f
i ⊗ ρ

f

i+1 only because the rest of the contributions is
traced out to give the unity. According to this some matrix

elements have to be found; However, one needs to calculate
16 × 16 of these matrix elements so let us introduce new
symbols, namely,

|G〉i ⊗ |G〉i+1 = |1〉i , |G〉i ⊗ |+〉i+1 = |2〉i ,
|G〉i ⊗ |−〉i+1 = |3〉i , |G〉i ⊗ |E〉i+1 = |4〉i ,
|+〉i ⊗ |G〉i+1 = |5〉i , |−〉i ⊗ |G〉i+1 = |6〉i ,
|E〉i ⊗ |G〉i+1 = |7〉i , |+〉i ⊗ |−〉i+1 = |8〉i ,
|−〉i ⊗ |+〉i+1 = |9〉i , |+〉i ⊗ |+〉i+1 = |10〉i ,
|−〉i ⊗ |−〉i+1 = |11〉i , |E〉i ⊗ |E〉i+1 = |12〉i ,
|E〉i ⊗ |+〉i+1 = |13〉i , |E〉i ⊗ |−〉i+1 = |14〉i ,
|+〉i ⊗ |E〉i+1 = |15〉i , |−〉i ⊗ |E〉i+1 = |16〉i ,
with energies which can be found from the table in Sect. 2.
The matrix elements between the same vectors equal zero,
that is,

∀n∈{1,...,16}∀i∈{1,...,L} i〈n|Tsfi |n〉i = 0.

Next we take the others. For any i

∀m∈{2,...,16}\{8,9}

i〈1|Tsfi |m〉i = i〈m|Tsfi |1〉i = 0,

i〈1|Tsfi |8〉i = i〈8|Tsfi |1〉i = 2uv and

i〈1|Tsfi |9〉i = i〈9|Tsfi |1〉i = −2uv,

∀m∈{3,...,16}\{5,15}

i〈2|Tsfi |m〉i = i〈m|Tsfi |2〉i = 0,

i〈2|Tsfi |5〉i = i〈5|Tsfi |2〉i = u2 − v2 and

i〈2|Tsfi |15〉i = i〈15|Tsfi |2〉i = −2uv,

∀m∈{4,...,16}\{6,16}

i〈3|Tsfi |m〉i = i〈m|Tsfi |3〉i = 0,

i〈3|Tsfi |6〉i = i〈6|Tsfi |3〉i = u2 − v2 and

i〈3|Tsfi |16〉i = i〈16|Tsfi |3〉i = −2uv,

∀m∈{5,...,16}\{7,9}

i〈4|Tsfi |m〉i = i〈m|Tsfi |4〉i = 0,

i〈4|Tsfi |7〉i = i〈7|Tsfi |4〉i = u2 − v2 and

i〈4|Tsfi |9〉i = i〈9|Tsfi |4〉i = −u2 + v2,

∀m∈{6,...,16}\{12}

i〈5|Tsfi |m〉i = i〈m|Tsfi |5〉i = 0,

i〈5|Tsfi |12〉i = i〈12|Tsfi |5〉i = −2uv,

∀m∈{7,...,16}\{14}
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i〈6|Tsfi |m〉i = i〈m|Tsfi |6〉i = 0,

i〈6|Tsfi |14〉i = i〈14|Tsfi |6〉i = −2uv,

∀m∈{8,...,16}\{8,9}

i〈7|Tsfi |m〉i = i〈m|Tsfi |7〉i = 0,

i〈7|Tsfi |8〉i = i〈8|Tsfi |7〉i = u2 − v2 and

i〈7|Tsfi |9〉i = i〈9|Tsfi |7〉i = −u2 + v2,

∀m∈{9,...,16}\{12}

i〈8|Tsfi |m〉i = i〈m|Tsfi |8〉i = 0,

i〈8|Tsfi |12〉i = i〈12|Tsfi |8〉i = −2uv,

∀m∈{10,...,16}\{12}

i〈9|Tsfi |m〉i = i〈m|Tsfi |9〉i = 0,

i〈9|Tsfi |12〉i = i〈12|Tsfi |9〉i = 2uv,

∀m∈{11,...,16} i〈10|Tsfi |m〉i = i〈m|Tsfi |10〉i = 0,

∀m∈{12,...,16} i〈11|Tsfi |m〉i = i〈m|Tsfi |11〉i = 0,

∀m∈{13,...,16} i〈12|Tsfi |m〉i = i〈m|Tsfi |12〉i = 0,

for m = 14 and m = 16

i〈13|Tsfi |m〉i = i〈m|Tsfi |13〉i = 0,

i〈13|Tsfi |15〉i = i〈15|Tsfi |13〉i = v2 − u2,

i〈14|Tsfi |15〉i = i〈15|Tsfi |14〉i = 0,

i〈14|Tsfi |16〉i = i〈16|Tsfi |14〉i = v2 − u2,

i〈15|Tsfi |16〉i = i〈16|Tsfi |15〉i = 0.

Having the matrix elements at disposal one can resort to
finding the denominators En − Em in (B.1). These are as
follows:

E1 − E8 = E1 − E9 = Uf − 2E,

E2 − E15 = E3 − E16 = E5 − E13 = E6 − E14 = −2E,

E8 − E12 = E9 − E12 = −Uf − 2E,

E4 − E8 = E4 − E9 = E7 − E8 = E7 − E9 = Uf ,

E3 − E6 = E2 − E5 = E13 − E15 = E14 − E16 = 0.

Notice that some of them equal zero, in spite of there be-
ing no singularities in the correction terms since the ratios
eβ(En−Em)−1

En−Em
converge to β if En − Em → 0. Now it remains

to collect all terms in (B.1) to obtain the formula (4.6).

Appendix C

To calculate ˜corpf|�=0 and ˜corsf|�=0 is a tedious task. Let us
start with the former expression. The following derivatives

are necessary:

∂fp1

∂�
= 1

2
βe−βUf �

E

×
[

sinh 2βE

Mf 2
− e−β Uf

2 cosh 2βE sinhβE

Mf 3

]
,

∂fp2

∂�
= −1

2
βe−3β Uf

2
�

E

sinhβE

Mf 3
.

Additionally, knowing that u2 − v2 = Ef −μ+ Uf

2
E

and uv =
1
2

�

E
, one obtains

∂(u2 − v2)2

∂�
= −2�

(Ef − μ + Uf

2 )2

E
4

,

∂u2v2

∂�
= 1

2

�

E
2

(
1 − �

2

E
2

)
.

Thus

1

L

∂corpf

∂�
= −tpfz

[
2

(
∂u2v2

∂�
fp1 + u2v2 ∂fp1

∂�

)

+ ∂(u2 − v2)2

∂�
fp2 + (

u2 − v2)2 fp2

∂�

]

= � ˜corpf,

where

˜corpf = −1

2

tpfze−βUf

E
2
Mf

[
1

2

(
1 − �

2

E
2

)
cosh 2βE

+ 1

2
β

�
2

E

(
sinh 2βE − e−β Uf

2 cosh 2βE sinhβE

Mf

)

− (Ef − μ + Uf

2 )2

E
2

− β
(Ef − μ + Uf

2 )2

E

e−β Uf

2 sinhβE

Mf

]
. (C.1)

For simplicity let us take Ef = μ = De
2 on. It is easy to show

that under proviso βcU
f 
 1 the expression (C.1) for � = 0

reduces to (4.8).
Similarly, ˜corsf|�=0 can be found with the help of

∂fs1

∂�
= −1

2
βe−βUf �

E

×
[

e2βE

Mf 2
+ eβ Uf

2 (1 − e−βUf
) sinhβE

Mf 3

]
,
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∂fs2

∂�
= 1

4
βe−β Uf

2
�

E

[
coshβE

Mf 2
− 2

e−β Uf

2 sinh2 βE

Mf 3

]
,

∂fs3

∂�
= −1

2
βe−β Uf

2
�

E

[
(1 − e−βUf

) sinhβE

Mf 3

]
,

∂fs4

∂�
= −1

2
βe−βUf �

E

×
[
e−2βE

Mf 2
+ eβ Uf

2 (−1 + e−β(Uf +2E)) sinhβE

Mf 3

]
,

∂fs5

∂�
= 1

4
βe−β Uf

2
�

E

×
[

sinhβE

Mf 2
− 2

e−β Uf

2 coshβE sinhβE

Mf 3

]
.

Moreover, the following derivatives are necessary:

∂

∂�

1

Uf − 2E
= 2

(Uf − 2E)2

�

E
,

∂

∂�

1

Uf + 2E
= − 2

(Uf + 2E)2

�

E
,

∂

∂�

1

E
= − �

E
3
.

Additionally ∂(u2−v2)2

∂�
and ∂u2v2

∂�
are indispensable but they

have been already calculated. Having found the expressions
above one can write down

1

L

∂corpf

∂�
= −t sf2

z

[
4
∂u2v2

∂�

(
fs1

Uf − 2E
+ 2

fs2

E

− fs3

Uf + 2E

)
+ 4u2v2

(
1

Uf − 2E

∂fs1

∂�

+ 2
1

E

∂fs2

∂�
− 1

Uf + 2E

∂fs3

∂�

+ fs1
∂

∂�

1

Uf − 2E
+ 2fs2

∂

∂�

1

E

− fs3
∂

∂�

1

Uf + 2E

)
+ 2

∂(u2 − v2)2

∂�

×
(

fs4

Uf
+ βfs5

)
+ 2

(
u2 − v2)2

×
(

1

Uf

∂fs4

∂�
+ β

∂fs5

∂�

)]
= � ˜corsf,

where

˜corsf = −t sf2
z

[
2

E
2

(
1 − �

2

E
2

)

×
(

fs1

Uf − 2E
+ 2

fs2

E
− fs3

Uf + 2E

)

+ �

E
2

(
1

Uf − 2E

∂fs1

∂�
+ 2

1

E

∂fs2

∂�
− 1

Uf + 2E

∂fs3

∂�

+ fs1
∂

∂�

1

Uf − 2E
+ 2fs2

∂

∂�

1

E

− fs3
∂

∂�

1

Uf + 2E

)
− 4

(Ef − μ + Uf

2 )2

E
4

×
(

fs4

Uf
+ βfs5

)

+ 2
(u2 − v2)2

�

(
1

Uf

∂fs4

∂�
+ β

∂fs5

∂�

)]
.

Putting Ef = μ = De
2 and � = 0 in ˜corsf and assuming that

βcU
f 
 1 one obtains (4.9)
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