15 research outputs found

    The forward physics facility at the high-luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    The Physics of the B Factories

    Get PDF

    Antimicrobial Peptides of Lactic Acid Bacteria: Mode of Action, Genetics and Biosynthesis.

    No full text
    B

    Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para os gêneros

    No full text

    Precision Studies of QCD in the Low Energy Domain of the EIC

    No full text
    103 pages,47 figuresThe manuscript focuses on the high impact science of the EIC with objective to identify a portion of the science program for QCD precision studies that requires or greatly benefits from high luminosity and low center-of-mass energies. The science topics include (1) Generalized Parton Distributions, 3D imagining and mechanical properties of the nucleon (2) mass and spin of the nucleon (3) Momentum dependence of the nucleon in semi-inclusive deep inelastic scattering (4) Exotic meson spectroscopy (5) Science highlights of nuclei (6) Precision studies of Lattice QCD in the EIC era (7) Science of far-forward particle detection (8) Radiative effects and corrections (9) Artificial Intelligence (10) EIC interaction regions for high impact science program with discovery potential. This paper documents the scientific basis for supporting such a program and helps to define the path toward the realization of the second EIC interaction region

    Precision Studies of QCD in the Low Energy Domain of the EIC

    No full text
    103 pages,47 figuresThe manuscript focuses on the high impact science of the EIC with objective to identify a portion of the science program for QCD precision studies that requires or greatly benefits from high luminosity and low center-of-mass energies. The science topics include (1) Generalized Parton Distributions, 3D imagining and mechanical properties of the nucleon (2) mass and spin of the nucleon (3) Momentum dependence of the nucleon in semi-inclusive deep inelastic scattering (4) Exotic meson spectroscopy (5) Science highlights of nuclei (6) Precision studies of Lattice QCD in the EIC era (7) Science of far-forward particle detection (8) Radiative effects and corrections (9) Artificial Intelligence (10) EIC interaction regions for high impact science program with discovery potential. This paper documents the scientific basis for supporting such a program and helps to define the path toward the realization of the second EIC interaction region
    corecore