17 research outputs found

    The renormalization of the effective Lagrangian with spontaneous symmetry breaking: the SU(2) case

    Get PDF
    We study the renormalization of the nonlinear effective SU(2) Lagrangian up to O(p4)O(p^4) with spontaneous symmetry breaking. The Stueckelberg transformation, the background field gauge, the Schwinger proper time and heat kernel method, and the covariant short distance expansion technology, guarantee the gauge covariance and incooperate the Ward indentities in our calculations. The renormalization group equations of the effective couplings are derived and analyzed. We find that the difference between the results gotten from the direct method and the renormalization group equation method can be quite large when the Higgs scalar is far below its decoupling limit.Comment: ReVTeX, 12 figures, 22 pages, some bugs are kicked off from programs, numerical analysis is renew

    Gapless Assembly of Maize Chromosomes Using Long-Read Technologies

    Get PDF
    Creating gapless telomere-to-telomere assemblies of complex genomes is one of the ultimate challenges in genomics. We use two independent assemblies and an optical map-based merging pipeline to produce a maize genome (B73-Ab10) composed of 63 contigs and a contig N50 of 162 Mb. This genome includes gapless assemblies of chromosome 3 (236 Mb) and chromosome 9 (162 Mb), and 53 Mb of the Ab10 meiotic drive haplotype. The data also reveal the internal structure of seven centromeres and five heterochromatic knobs, showing that the major tandem repeat arrays (CentC, knob180, and TR-1) are discontinuous and frequently interspersed with retroelements

    Tumor invasion and metastasis in drosophila: a bold past, a bright future

    No full text
    Invasion and metastasis are the most deadly hallmarks of cancer. Once a cancer has acquired the ability to colonize new sites in the body it becomes dramatically more difficult to treat. This has made it a focus of much of cancer research. The humble fruit fly, Drosophila melanogaster, has despite its relative simplicity, made significant contributions to the understanding of tumor progression. In this review we outline and highlight those with an emphasis on modeling the genetic and epigenetic changes required for invasion and metastasis. We will revisit the early years of cancer modeling in Drosophila where the first parallels were drawn between Drosophila and vertebrate neoplasms and highlight recent advances using genetic screens and interactions with the epithelial microenvironment and innate immune system. We focus on the power and limitations of current fly models of metastasis

    Musical Instruments

    No full text
    corecore