70 research outputs found

    DNA Barcoding analysis of seafood accuracy in Washington, D.C. restaurants

    Get PDF
    Indexación: Scopus.In Washington D.C., recent legislation authorizes citizens to test if products are properly represented and, if they are not, to bring a lawsuit for the benefit of the general public. Recent studies revealing the widespread phenomenon of seafood substitution across the United States make it a fertile area for consumer protection testing. DNA barcoding provides an accurate and cost-effective way to perform these tests, especially when tissue alone is available making species identification based on morphology impossible. In this study, we sequenced the 5' barcoding region of the Cytochrome Oxidase I gene for 12 samples of vertebrate and invertebrate food items across six restaurants in Washington, D.C. and used multiple analytical methods to make identifications. These samples included several ambiguous menu listings, sequences with little genetic variation among closely related species and one sequence with no available reference sequence. Despite these challenges, we were able to make identifications for all samples and found that 33% were potentially mislabeled. While we found a high degree of mislabeling, the errors involved closely related species and we did not identify egregious substitutions as have been found in other cities. This study highlights the efficacy of DNA barcoding and robust analyses in identifying seafood items for consumer protection.https://peerj.com/articles/3234

    Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus

    Get PDF
    The grey wolf (Canis lupus) and coyote (C. latrans) are highly mobile carnivores that disperse over great distances in search of territories and mates. Previous genetic studies have shown little geographical structure in either species. However, population genetic structure is also influenced by past isolation events and population fluctuations during glacial periods. In this study, control region sequence data from a worldwide sample of grey wolves and a more limited sample of coyotes were analysed. The results suggest that fluctuating population sizes during the late Pleistocene have left a genetic signature on levels of variation in both species. Genealogical measures of nucleotide diversity suggest that historical population sizes were much larger in both species and grey wolves were more numerous than coyotes. Currently, about 300 000 wolves and 7 million coyotes exist. In grey wolves, genetic diversity is greater than that predicted from census population size, reflecting recent historical population declines. By contrast, nucleotide diversity in coyotes is smaller than that predicted by census population size, reflecting a recent population expansion following the extirpation of wolves from much of North America. Both species show little partitioning of haplotypes on continental or regional scales. However, a statistical parsimony analysis indicates local genetic structure that suggests recent restricted gene flow.Peer Reviewe

    Recent African derivation of Chrysomya putoria from C. chloropyga and mitochondrial DNA paraphyly of cytochrome oxidase subunit one in blowflies of forensic importance

    Get PDF
    Chrysomya chloropyga (Wiedemann) and C. putoria (Wiedemann) (Diptera: Calliphoridae) are closely related Afrotropical blowflies that breed in carrion and latrines, reaching high density in association with humans and spreading to other continents. In some cases of human death, Chyrsomya specimens provide forensic clues. Because the immature stages of such flies are often difficult to identify taxonomically, it is useful to develop DNA-based tests for specimen identification. Therefore we attempted to distinguish between C. chloropyga and C. putoria using mitochondrial DNA (mtDNA) sequence data from a 593-bp region of the gene for cytochrome oxidase subunit one (COI). Twelve specimens from each species yielded a total of five haplotypes, none being unique to C. putoria. Therefore it was not possible to distinguish between the two species using this locus. Maximum parsimony analysis indicated paraphyletic C. chloropyga mtDNA with C. putoria nested therein. Based on these and previously published data, we infer that C. putoria diverged very recently from C. chloropyga

    Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea)

    Get PDF
    International audienceRates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach

    Extracorporeal Membrane Oxygenation Characteristics and Outcomes in Children and Adolescents With COVID-19 or Multisystem Inflammatory Syndrome Admitted to U.S. ICUs

    Get PDF
    OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) has been used successfully to support adults with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related cardiac or respiratory failure refractory to conventional therapies. Comprehensive reports of children and adolescents with SARS-CoV-2-related ECMO support for conditions, including multisystem inflammatory syndrome in children (MIS-C) and acute COVID-19, are needed. Design: Case series of patients from the Overcoming COVID-19 public health surveillance registry. SETTING: Sixty-three hospitals in 32 U.S. states reporting to the registry between March 15, 2020, and December 31, 2021. PATIENTS: Patients less than 21 years admitted to the ICU meeting Centers for Disease Control criteria for MIS-C or acute COVID-19. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The final cohort included 2,733 patients with MIS-C (n = 1,530; 37 [2.4%] requiring ECMO) or acute COVID-19 (n = 1,203; 71 [5.9%] requiring ECMO). ECMO patients in both groups were older than those without ECMO support (MIS-C median 15.4 vs 9.9 yr; acute COVID-19 median 15.3 vs 13.6 yr). The body mass index percentile was similar in the MIS-C ECMO versus no ECMO groups (89.9 vs 85.8; p = 0.22) but higher in the COVID-19 ECMO versus no ECMO groups (98.3 vs 96.5; p = 0.03). Patients on ECMO with MIS-C versus COVID-19 were supported more often with venoarterial ECMO (92% vs 41%) for primary cardiac indications (87% vs 23%), had ECMO initiated earlier (median 1 vs 5 d from hospitalization), shorter ECMO courses (median 3.9 vs 14 d), shorter hospital length of stay (median 20 vs 52 d), lower in-hospital mortality (27% vs 37%), and less major morbidity at discharge in survivors (new tracheostomy, oxygen or mechanical ventilation need or neurologic deficit; 0% vs 11%, 0% vs 20%, and 8% vs 15%, respectively). Most patients with MIS-C requiring ECMO support (87%) were admitted during the pre-Delta (variant B.1.617.2) period, while most patients with acute COVID-19 requiring ECMO support (70%) were admitted during the Delta variant period. Conclusions: ECMO support for SARS-CoV-2-related critical illness was uncommon, but type, initiation, and duration of ECMO use in MIS-C and acute COVID-19 were markedly different. Like pre-pandemic pediatric ECMO cohorts, most patients survived to hospital discharge

    Red swamp crayfish: biology, ecology and invasion - an overview

    Full text link

    Phylogeographic patterning in a freshwater crab species (Decapoda: Potamonautidae: Potamonautes) reveals the signature of historical climatic oscillations

    No full text
    Aim: The phylogeographic relationships among populations of the common Cape River crab, Potamonautes perlatus, are examined to investigate whether the contemporary population genetic structure is congruent with the hypothesized hydrographic evolution of drainage systems established during the Pliocene, or whether it reflects an older Miocene climatic amelioration. Location: 139 samples of P. perlatus were collected from 31 populations distributed among the five major perennial drainage systems and a number of smaller catchments in the Western and Eastern Cape, South Africa. Methods: Phylogeographic analysis using parsimony, maximum likelihood, minimum evolution and Bayesian inferences was employed for the 16S rRNA mtDNA gene region, while bootstrapping and posterior probabilities were used to assess the robustness of clades. In addition, nested clade analysis was performed in an attempt to disentangle the contemporary and historical factors that have sculpted genealogical relationships among conspecific populations of P. perlatus. Results: Phylogenetic topologies were congruent irrespective of the evolutionary method employed. Two highly distinct reciprocally monophyletic clades characterized by marked levels of corrected sequence divergence were present, with no shared haplotypes between the two major phylogroups. Phylogroup one comprises the populations of the westward-flowing drainages (mainly the Berg and Olifants drainages), and phylogroup two comprises all of the southward-flowing drainages and can further be divided into two subclades - one containing the Breede River populations, and the other containing the Gamtoos and Gourits drainage systems. The nested clade analysis demonstrated restricted gene flow and long-distance dispersal for a number of higher clade levels. The higher-level groups and results for the total cladogram suggest either fragmentation or isolation by distance. Main conclusions: Freshwater crabs are generally highly philopatric, and dispersal, although not common, has occurred historically. The westward-flowing drainages (Berg, Olifants, Eerste, Liesbeeck and Tokai) are isolated from the southward-flowing drainages by the Cape Fold Mountains, while the southward-flowing drainages have a number of tributaries that extend into the low-lying regions, allowing for gene flow between these three major drainages systems (Breede, Gamtoos and Gourits). Among the westward-flowing drainages, a more intensive sampling regime is required to understand evolutionary relationships. Our molecular results suggest that the observed patterns pre-date the formation of contemporary hydrographic patterns in the Cape. This suggests that an older Late Miocene event has severely impacted the contemporary population structure in this species, as recent Pliocene hydrographic boundaries do not correspond to the phylogeographic pattern observed. Conservation efforts for aquatic taxa should clearly be directed at the catchments, in an attempt to conserve biological diversity. © 2006 The Authors.Articl

    Living with the genetic signature of Miocene induced change: Evidence from the phylogeographic structure of the endemic angulate tortoise Chersina angulata

    No full text
    The phylogeographic structure of the monotypic endemic southern African angulate tortoise Chersina angulata was investigated throughout its distribution with the use of partial sequences from three mtDNA loci (COI, cyt b and ND4). Phylogeographic and phylogenetic structuring obtained for the three mtDNA markers were highly congruent and suggested the presence of two genetically distinct, reciprocally monophyletic evolutionary lineages. Group one contained two subclades with haplotypes from the north-western Cape and south-western Cape, respectively, while haplotypes from the southern Cape comprised group two. The two major clades were separated by nine and eight mutational steps for COI and ND4, respectively. Of the three mtDNA gene regions examined, the ND4 partial sequence contained the most phylogenetic signal. Haplotype diversity was generally low and we recovered 34 haplotypes for the 125 animals sequenced for the ND4 subunit. Nested clade analyses performed on the variable ND4 partial sequences suggested the presence of two major refugial areas for this species. The demographic history of the taxon was characterised by range expansion and prolonged historical fragmentation. Divergence time estimates suggest that the temporal and spatial distribution of the taxon was sculpted by changes in temperature and rainfall patterns since the late Miocene. Corroborative evidence from other reptiles is also suggestive of a late Miocene divergence, indicating that this was a major epoch for cladogenesis in southern Africa. Apart from the genetic differences between the two major clades, we also note morphometric and behavioural differences, alluding to the presence of two putative taxa nested within C. angulata. © 2007 Elsevier Inc. All rights reserved.Articl

    Unraveling evolutionary lineages in the limbless fossorial skink genus Acontias (Sauria: Scincidae): Are subspecies equivalent systematic units?

    No full text
    Subspecies in the limbless, endemic African fossorial skink genus Acontias constitute ill-defined operational taxonomic units, consequently considerable systematic debate has lingered on the systematic diversity within Acontias. In the present study, the systematic affinities among acontine taxa are explored with the utility of partial sequence data from two mitochondrial gene loci (16S rRNA and cytochrome oxidase subunit 1 (COI)) for all taxa, while two additional loci (12S rRNA, cytochrome b) were used to investigate relationships within the Acontias meleagris complex. Phylogenetic results, derived from the combined analysis, revealed two monophyletic clades. Clade 1 is comprised of small-bodied skinks while clade 2 comprised the medium bodied skinks. Within clade 2 none of the traditionally recognized subspecies formed reciprocally monophyletic groups. Furthermore, constraining the topology and enforcing sister taxa relationships between the assumed subspecies, consistently recovered a topology that was statistically significant worse, indicating that the traditionally designated subspecies groupings probably represent invalid taxonomic units, thus clearly reflecting considerable discord with current taxonomy. The burrowing life style of these lizards has probably led to marked convergent evolution and constrained the development of diagnostic morphological characters among these species. Morphological similarities in color as well as scale architecture within Acontias are labile and highly homoplaseous and do not reflect the evolutionary history of the group. Taxonomic implications of these results are discussed. © 2004 Elsevier Inc. All rights reserved.Articl
    • …
    corecore