7 research outputs found

    Acute Management of Minor Head Injury

    Get PDF
    Minor head injury (MHI) is a major socioeconomic and health burden throughout the world. However, many controversies exist about the best acute management. In this thesis the extent of practice variation in acute management of MHI at the emergency department is investigated. Because CT decision rules and guidelines play a crucial role in the acute management of patients with MHI, this thesis focused on how these CT rules could be improved

    Impact of guidelines for the management of minor head injury on the utilization and diagnostic yield of CT over two decades, using natural language processing in a large dataset

    Get PDF
    Objectives We investigated the impact of clinical guidelines for the management of minor head injury on utilization and diagnostic yield of head CT over two decades. Methods Retrospective before-after study using multiple electronic health record data sources. Natural language processing algorithms were developed to rapidly extract indication, Glasgow Coma Scale, and CT outcome from clinical records, creating two datasets: one based on all head injury CTs from 1997 to 2009 (n = 9109), for which diagnostic yield of intracranial traumatic findings was calculated. The second dataset (2009–2014) used both CT reports and clinical notes from the emergency department, enabling selection of minor head injury patients (n = 4554) and calculation of both CT utilization and diagnostic yield. Additionally, we tested for significant changes in utilization and yield after guideline implementation in 2011, using chi-square statistics and logistic regression. Results The yield was initially nearly 60%, but in a decreasing trend dropped below 20% when CT became routinely used for head trauma. Between 2009 and 2014, of 4554 minor head injury patients overall, 85.4% underwent head CT. After guideline implementation in 2011, CT utilization significantly increased from 81.6 to 87.6% (p = 7 × 10−7 ), while yield significantly decreased from 12.2 to 9.6% (p = 0.029). Conclusions The number of CTs performed for head trauma gradually increased over two decades, while the yield decreased. In 2011, despite implementation of a guideline aiming to improve selective use of CT in minor head injury, utilization significantly increased

    The burden of traumatic brain injury from low-energy falls among patients from 18 countries in the CENTER-TBI Registry: A comparative cohort study.

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) is an important global public health burden, where those injured by high-energy transfer (e.g., road traffic collisions) are assumed to have more severe injury and are prioritised by emergency medical service trauma triage tools. However recent studies suggest an increasing TBI disease burden in older people injured through low-energy falls. We aimed to assess the prevalence of low-energy falls among patients presenting to hospital with TBI, and to compare their characteristics, care pathways, and outcomes to TBI caused by high-energy trauma. METHODS AND FINDINGS: We conducted a comparative cohort study utilising the CENTER-TBI (Collaborative European NeuroTrauma Effectiveness Research in TBI) Registry, which recorded patient demographics, injury, care pathway, and acute care outcome data in 56 acute trauma receiving hospitals across 18 countries (17 countries in Europe and Israel). Patients presenting with TBI and indications for computed tomography (CT) brain scan between 2014 to 2018 were purposively sampled. The main study outcomes were (i) the prevalence of low-energy falls causing TBI within the overall cohort and (ii) comparisons of TBI patients injured by low-energy falls to TBI patients injured by high-energy transfer-in terms of demographic and injury characteristics, care pathways, and hospital mortality. In total, 22,782 eligible patients were enrolled, and study outcomes were analysed for 21,681 TBI patients with known injury mechanism; 40% (95% CI 39% to 41%) (8,622/21,681) of patients with TBI were injured by low-energy falls. Compared to 13,059 patients injured by high-energy transfer (HE cohort), the those injured through low-energy falls (LE cohort) were older (LE cohort, median 74 [IQR 56 to 84] years, versus HE cohort, median 42 [IQR 25 to 60] years; p < 0.001), more often female (LE cohort, 50% [95% CI 48% to 51%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001), more frequently taking pre-injury anticoagulants or/and platelet aggregation inhibitors (LE cohort, 44% [95% CI 42% to 45%], versus HE cohort, 13% [95% CI 11% to 14%]; p < 0.001), and less often presenting with moderately or severely impaired conscious level (LE cohort, 7.8% [95% CI 5.6% to 9.8%], versus HE cohort, 10% [95% CI 8.7% to 12%]; p < 0.001), but had similar in-hospital mortality (LE cohort, 6.3% [95% CI 4.2% to 8.3%], versus HE cohort, 7.0% [95% CI 5.3% to 8.6%]; p = 0.83). The CT brain scan traumatic abnormality rate was 3% lower in the LE cohort (LE cohort, 29% [95% CI 27% to 31%], versus HE cohort, 32% [95% CI 31% to 34%]; p < 0.001); individuals in the LE cohort were 50% less likely to receive critical care (LE cohort, 12% [95% CI 9.5% to 13%], versus HE cohort, 24% [95% CI 23% to 26%]; p < 0.001) or emergency interventions (LE cohort, 7.5% [95% CI 5.4% to 9.5%], versus HE cohort, 13% [95% CI 12% to 15%]; p < 0.001) than patients injured by high-energy transfer. The purposive sampling strategy and censorship of patient outcomes beyond hospital discharge are the main study limitations. CONCLUSIONS: We observed that patients sustaining TBI from low-energy falls are an important component of the TBI disease burden and a distinct demographic cohort; further, our findings suggest that energy transfer may not predict intracranial injury or acute care mortality in patients with TBI presenting to hospital. This suggests that factors beyond energy transfer level may be more relevant to prehospital and emergency department TBI triage in older people. A specific focus to improve prevention and care for patients sustaining TBI from low-energy falls is required.CENTER-TBI was supported by the European Union 7th Framework program (EC grant 602150), recipient A.I.R. Maas. Additional funding was obtained from the Hannelore Kohl Stiftung (Germany) - recipient A.I.R. Maas, from OneMind (USA) - recipient A.I.R. Maas and from Integra LifeSciences Corporation (USA) - recipient A.I.R. Maas. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    External validation of computed tomography decision rules for minor head injury: Prospective, multicentre cohort study in the Netherlands

    Get PDF
    Objective To externally validate four commonly used rules in computed tomography (CT) for minor head injury. Design Prospective, multicentre cohort study. Setting Three university and six non-university hospitals in the Netherlands. Participants Consecutive adult patients aged 16 years and over who presented with minor head injury at the emergency department with a Glasgow coma scale score of 13-15 between March 2015 and December 2016. Main outcome measures The primary outcome was any intracrania

    Informed consent procedures in patients with an acute inability to provide informed consent

    Get PDF
    Purpose: Enrolling traumatic brain injury (TBI) patients with an inability to provide informed consent in research is challenging. Alternatives to patient consent are not sufficiently embedded in European and national legislation, which allows procedural variation and bias. We aimed to quantify variations in informed consent policy and practice. Methods: Variation was explored in the CENTER-TBI study. Policies were reported by using a questionnaire and national legislation. Data on used informed consent procedures were available for 4498 patients from 57 centres across 17 European countries. Results: Variation in the use of informed consent procedur

    Tracheal intubation in traumatic brain injury

    Get PDF
    Background: We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods: Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results: In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion: The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration: NCT02210221

    Diagnostiek bij patiënten met licht traumatisch hoofdletsel

    No full text
    In the emergency department, we see many patients with minor head injury (MHI). To help physicians decide which patient should have a CT scan, decision rules have been developed that calculate the risk of intracranial complications based on a number of criteria. One of those decision rules is the CT in Head Injury Patients (CHIP) decision rule on which the Dutch national MHI guideline is based. In a recent hospital-based study in the Netherlands, the CHIP decision rule and three other decision rules were investigated. The different decision rules showed a variation in the percentage of unnecessary CT scans and failure to identify traumatic abnormalities on CT. The CHIP decision rule performed the best, but an update of the decision rule is needed. We expect that the results of our study and future update of the CHIP decision rule can contribute to an effective decision rule for clinical practice.Op de SEH zien we dagelijks patiënten met licht traumatisch hoofdletsel (LTH). Er zijn beslisregels ontwikkeld om artsen te helpen besluiten welke patiënt een CT moet krijgen. Deze regels berekenen op basis van een aantal criteria het risico op intracraniële afwijkingen. Een van die beslisregels is de CT in Head Injury Patients (CHIP)-beslisregel, waarop de Nederlandse LTH-richtlijn is gebaseerd. Recentelijk heeft een groep Nederlandse ziekenhuizen de CHIP-beslisregel en 3 andere beslisregels onderzocht. De verschillende beslisregels verschillen onderling in het percentage onnodige CT-scans en het missen van traumatische afwijkingen op CT. De CHIP-beslisregel presteert het beste, maar een update van deze beslisregel is nodig. We verwachten dat de resultaten van het onderzoek en de toekomstige update van de CHIP-beslisregel bijdragen aan een doelmatige en in de praktijk goed bruikbare beslisregel. Op de Spoedeisende Hulp (SEH) zien we dagelijks patiënten met licht traumatisch hoofdletsel (LTH). Het aantal patiënten dat met traumatisch hoofdletsel de SEH bezoekt wordt geschat op circa 47.000 per jaar. Minder dan 10% van deze patiën
    corecore