4,871 research outputs found

    Modified Reconstruction of Standard Model in Non-Commutative Differential Geometry

    Full text link
    Sogami recently proposed the new idea to express Higgs particle as a kind of gauge particle by prescribing the generalized covariant derivative with gauge and Higgs fields operating on quark and lepton fields. The field strengths for both the gauge and Higgs fields are defined by the commutators of the covariant derivative by which he could obtain the Yang-Mills Higgs Lagrangian in the standard model. Inspired by Sogami's work, we present a modification of our previous scheme to formulate the spontaneously broken gauge theory in non-commutative geometry on the discrete space; Minkowski space multiplied by two points space by introducing the generation mixing matrix in operation of the generalized derivative on the more fundamental fields a_i(x,y) which compose the gauge and Higgs fields. The standard model is reconstructed according to the modified scheme, which does not yields not only any special relations between the particle masses but also the special restriction on the Higgs potential.Comment: 21 page

    BRST invariant Lagrangian of spontaneously broken gauge theories in noncommutative geometry

    Get PDF
    The quantization of spontaneously broken gauge theories in noncommutative geometry(NCG) has been sought for some time, because quantization is crucial for making the NCG approach a reliable and physically acceptable theory. Lee, Hwang and Ne'eman recently succeeded in realizing the BRST quantization of gauge theories in NCG in the matrix derivative approach proposed by Coquereaux et al. The present author has proposed a characteristic formulation to reconstruct a gauge theory in NCG on the discrete space M4×ZNM_4\times Z_{_N}. Since this formulation is a generalization of the differential geometry on the ordinary manifold to that on the discrete manifold, it is more familiar than other approaches. In this paper, we show that within our formulation we can obtain the BRST invariant Lagrangian in the same way as Lee, Hwang and Ne'eman and apply it to the SU(2)×\timesU(1) gauge theory.Comment: RevTeX, page

    Orbital Order, Structural Transition and Superconductivity in Iron Pnictides

    Full text link
    We investigate the 16-band d-p model for iron pnictide superconductors in the presence of the electron-phonon coupling g with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening. Within the RPA, we obtain the ferro-orbital order below TQ which induces the tetragonal-orthorhombic structural transition at Ts = TQ, together with the stripe-type antiferromagnetic order below TN. Near the phase transitions, the system shows the s++ wave superconductivity due to the orbital fluctuation for a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation for a small g case with TQ < TN. The former case is consistent with the phase diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp

    A High-Density SSR Linkage Map of Red Clover and Its Transferability to Other Legumes

    Get PDF
    A high-density linkage map of red clover was constructed based on SSR and RFLP markers. In order to construct a linkage map with user (breeder) friendly markers; i.e. informative and easy detection, two policies were adopted for marker development. One was that the markers should be derived from cDNA or gene-rich regions, and the other was that the SSR markers should be detected polymorphisms on agarose gels. We also discuss the transferability of the markers on the map to other red clover germplasm and legumes. Such highly transferable markers could be used to screen anchor markers for both on a consensus map of red clover and other legume species

    First Detection of 12CO (1--0) Emission from Two Narrow-Line Seyfert 1 Galaxies

    Full text link
    In order to investigate how the growth of galactic bulges progresses with the growth of central black holes (BHs), we observed molecular gas (fuel for the coming star formation) in possibly young active galaxies, narrow-line Seyfert 1 galaxies (NLS1s). We present the results of radio observations of 12CO(1--0) using the Nobeyama Millimeter Array (with 2--4 kpc spatial resolution) for two FIR-bright NLS1s, yielding the first detection of their CO emission. Corresponding molecular--gas masses M(H2) of (1-3) X 109 Msun are the 2nd and 4th largest ones among NLS1s. By estimating dynamical masses and bulge masses M(bulge) for these two NLS1s using CO channel map and CO line widths, we found M(H2) amount to 0.13--0.35 of these masses. Taking account the star formation efficiency (~ 0.1), the increase in M(bulge) in those NLS1s in the near future (~< 10^{7.5} yr) is expected not to be a huge fraction (1--5% of the preexisting stars). Bulge growth may have finished before BH growth, or bulge--BH coevolution may proceed with many, occasional discrete events, where one coevolution event produces only a small amount of mass growth of BHs and of bulges. We also discuss the ratios of star-formation rate--to--gas accretion rate onto BHs, finding that two NLS1s have very small ratios (~ 1) compared with the M(bulge)/M(BH) ratios found in active and inactive galaxies (~ 700). This huge difference suggests either the non-overlapped coevolution, long star formation duration or temporarily high accretion rate during NLS1 phase.Comment: 29 pages, 8 figures, Accepted for publication in The Astrophysical Journa

    GOODS-HerschelHerschel: identification of the individual galaxies responsible for the 80-290Ό\mum cosmic infrared background

    Get PDF
    We propose a new method of pushing HerschelHerschel to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24ÎŒ\mum colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected HerschelHerschel sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250ÎŒ\mum and more than 3 in the 350ÎŒ\mum and 500ÎŒ\mum bands. We produce realistic mock HerschelHerschel images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-HerschelHerschel Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a "local confusion noise". Two methods are used to identify sources with reliable photometric accuracy extracted using 24ÎŒ\mum prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24ÎŒ\mum neighbours and the photometric accuracy index (PAI) directly extracted from the mock HerschelHerschel images. After correction for completeness, thanks to our mock HerschelHerschel images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100ÎŒ\mum and 2.2 mJy at 160ÎŒ\mum and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250ÎŒ\mum, 350ÎŒ\mum, and 500ÎŒ\mum, respectively. The latter depths improve the detection limits of HerschelHerschel by factors of 5 at 250ÎŒ\mum, and 3 at 350ÎŒ\mum and 500ÎŒ\mum as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all HerschelHerschel bands appear to be distant siblings of the Milky Way (zz∌\sim0.96 for λ\lambda<<300ÎŒ\mum) with a stellar mass of M⋆M_{\star}∌\sim9×\times1010^{10}M⊙_{\odot}.Comment: 22 pages, 16 figures. Accepted for publication by Astronomy and Astrophysic

    Unidentified Infrared Emission Bands in the Diffuse Interstellar Medium

    Full text link
    Using the Mid-Infrared Spectrometer on board the Infrared Telescope in Space and the low-resolution grating spectrometer (PHT-S) on board the Infrared Space Observatory, we obtained 820 mid-infrared (5 to 12 Ό\mum) spectra of the diffuse interstellar medium (DIM) in the Galactic center, W51, and Carina Nebula regions. These spectra indicate that the emission is dominated by the unidentified infrared (UIR) emission bands at 6.2, 7.7, 8.6, and 11.2 Ό\mum. The relative band intensities (6.2/7.7 Ό\mum, 8.6/7.7 Ό\mum, and 11.2/7.7 Ό\mum) were derived from these spectra, and no systematic variation in these ratios was found in our observed regions, in spite of the fact that the incident radiation intensity differs by a factor of 1500. Comparing our results with the polycyclic aromatic hydrocarbons (PAHs) model for the UIR band carriers, PAHs in the DIM have no systematic variation in their size distribution, their degree of dehydrogenation is independent of the strength of UV radiation field, and they are mostly ionized. The latter finding is incompatible with past theoretical studies, in which a large fraction of neutral PAHs is predicted in this kind of environment. A plausible resolution of this discrepancy is that the recombination coefficients for electron and large PAH positive ion are by at least an order of magnitude less than those adopted in past theoretical studies. Because of the very low population of neutral state molecules, photoelectric emission from interstellar PAHs is probably not the dominant source of heating of the diffuse interstellar gas. The present results imply constant physical and chemical properties of the carriers of the UIR emission bands in the DIM.Comment: 13 pages, 6 figures. Accepted for publication in Ap

    Characterization and Improvement of the Image Quality of the Data Taken with the Infrared Camera (IRC) Mid-Infrared Channels onboard AKARI

    Full text link
    Mid-infrared images frequently suffer artifacts and extended point spread functions (PSFs). We investigate the characteristics of the artifacts and the PSFs in images obtained with the Infrared Camera (IRC) onboard AKARI at four mid-infrared bands of the S7 (7{\mu}m), S11 (11{\mu}m), L15 (15{\mu}m), and L24 (24 {\mu}m). Removal of the artifacts significantly improves the reliability of the ref- erence data for flat-fielding at the L15 and L24 bands. A set of models of the IRC PSFs is also constructed from on-orbit data. These PSFs have extended components that come from diffraction and scattering within the detector arrays. We estimate the aperture correction factors for point sources and the surface brightness correction factors for diffuse sources. We conclude that the surface brightness correction factors range from 0.95 to 0.8, taking account of the extended component of the PSFs. To correct for the extended PSF effects for the study of faint structures, we also develop an image reconstruction method, which consists of the deconvolution with the PSF and the convolution with an appropriate Gaussian. The appropriate removal of the artifacts, improved flat-fielding, and image reconstruction with the extended PSFs enable us to investigate de- tailed structures of extended sources in IRC mid-infrared images.Comment: 35 pages, 15 figures, accepted for publication in PAS

    Reconstruction of the eruptive history of Usu volcano, Hokkaido, Japan, inferred from petrological correlation between tephras and dome lavas

    Get PDF
    Usu volcano has erupted nine times since 1663. Most eruptive events started with an explosive eruption, which was followed by the formation of lava domes. However, the ages of several summit lava domes and craters remain uncertain. The petrological features of tephra deposits erupted from 1663 to 1853 are known to change systematically. In this study, we correlated lavas with tephras under the assumption that lava and tephra samples from the same event would have similar petrological features. Although the initial explosive eruption in 1663 was not accompanied by lava effusion, lava dome or cryptodome formation was associated with subsequent explosive eruptions. We inferred the location of the vent associated with each event from the location of the associated lava dome and the pyroclastic flow deposit distribution and found that the position of the active vent within the summit caldera differed for each eruption from the late 17th through the 19th century. Moreover, we identified a previously unrecognized lava dome produced by a late 17th century eruption; this dome was largely destroyed by an explosive eruption in 1822 and was replaced by a new lava dome during a later stage of the 1822 event at nearly the same place as the destroyed dome. This new interpretation of the sequence of events is consistent with historical sketches and documents. Our results show that petrological correlation, together with geological evidence, is useful not only for reconstructing volcanic eruption sequences but also for gaining insight into future potential disasters
    • 

    corecore