14,427 research outputs found
Effective degrees of nonlinearity in a family of generalized models of two-dimensional turbulence
We study the small-scale behavior of generalized two-dimensional turbulence
governed by a family of model equations, in which the active scalar
is advected by the incompressible flow
. The dynamics of this family are characterized by the
material conservation of , whose variance is
preferentially transferred to high wave numbers. As this transfer proceeds to
ever-smaller scales, the gradient $\nabla\theta$ grows without bound. This
growth is due to the stretching term $(\nabla\theta\cdot\nabla)\u$ whose
``effective degree of nonlinearity'' differs from one member of the family to
another. This degree depends on the relation between the advecting flow $\u$
and the active scalar $\theta$ and is wide ranging, from approximately linear
to highly superlinear. Linear dynamics are realized when $\nabla\u$ is a
quantity of no smaller scales than $\theta$, so that it is insensitive to the
direct transfer of the variance of $\theta$, which is nearly passively
advected. This case corresponds to $\alpha\ge2$, for which the growth of
$\nabla\theta$ is approximately exponential in time and non-accelerated. For
$\alpha<2$, superlinear dynamics are realized as the direct transfer of
entails a growth in \nabla\u, thereby enhancing the production
of . This superlinearity reaches the familiar quadratic
nonlinearity of three-dimensional turbulence at and surpasses that
for . The usual vorticity equation () is the border line,
where \nabla\u and are of the same scale, separating the linear and
nonlinear regimes of the small-scale dynamics. We discuss these regimes in
detail, with an emphasis on the locality of the direct transfer.Comment: 6 journal pages, to appear in Physical Review
Ground state fluctuations in finite Fermi and Bose systems
We consider a small and fixed number of fermions (bosons) in a trap. The
ground state of the system is defined at T=0. For a given excitation energy,
there are several ways of exciting the particles from this ground state. We
formulate a method for calculating the number fluctuation in the ground state
using microcanonical counting, and implement it for small systems of
noninteracting fermions as well as bosons in harmonic confinement. This exact
calculation for fluctuation, when compared with canonical ensemble averaging,
gives considerably different results, specially for fermions. This difference
is expected to persist at low excitation even when the fermion number in the
trap is large.Comment: 20 pages (including 1 appendix), 3 postscript figures. An error was
found in one section of the paper. The corrected version is updated on
Sep/05/200
Beware of simple methods for structure-based virtual screening: the critical importance of broader comparisons
We discuss how data unbiasing and simple methods such as protein-ligand Interaction FingerPrint (IFP) can overestimate virtual screening performance. We also show that IFP is strongly outperformed by target-specific machine-learning scoring functions, which were not considered in a recent report concluding that simple methods were better than machine-learning scoring functions at virtual screening
Euclidean-signature Supergravities, Dualities and Instantons
We study the Euclidean-signature supergravities that arise by compactifying
D=11 supergravity or type IIB supergravity on a torus that includes the time
direction. We show that the usual T-duality relation between type IIA and type
IIB supergravities compactified on a spatial circle no longer holds if the
reduction is performed on the time direction. Thus there are two inequivalent
Euclidean-signature nine-dimensional maximal supergravities. They become
equivalent upon further spatial compactification to D=8. We also show that
duality symmetries of Euclidean-signature supergravities allow the harmonic
functions of any single-charge or multi-charge instanton to be rescaled and
shifted by constant factors. Combined with the usual diagonal dimensional
reduction and oxidation procedures, this allows us to use the duality
symmetries to map any single-charge or multi-charge p-brane soliton, or any
intersection, into its near-horizon regime. Similar transformations can also be
made on non-extremal p-branes. We also study the structures of duality
multiplets of instanton and (D-3)-brane solutions.Comment: Latex, 50 pages, typos corrected and references adde
On the Microcanonical Entropy of a Black Hole
It has been suggested recently that the microcanonical entropy of a system
may be accurately reproduced by including a logarithmic correction to the
canonical entropy. In this paper we test this claim both analytically and
numerically by considering three simple thermodynamic models whose energy
spectrum may be defined in terms of one quantum number only, as in a
non-rotating black hole. The first two pertain to collections of noninteracting
bosons, with logarithmic and power-law spectra. The last is an area ensemble
for a black hole with equi-spaced area spectrum. In this case, the many-body
degeneracy factor can be obtained analytically in a closed form. We also show
that in this model, the leading term in the entropy is proportional to the
horizon area A, and the next term is ln A with a negative coefficient.Comment: 15 pages, 1 figur
The Angular Momentum of Brightest Cluster Galaxies
Massive Brightest Cluster Galaxies (BCGs) are observed to have a range of angular momenta, suggesting a variety of merging historie
Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle
Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin
BiTeCl and BiTeBr: a comparative high-pressure optical study
We here report a detailed high-pressure infrared transmission study of BiTeCl
and BiTeBr. We follow the evolution of two band transitions: the optical
excitation between two Rashba-split conduction bands, and the
absorption across the band gap. In the low pressure range, ~GPa,
for both compounds is approximately constant with pressure and
decreases, in agreement with band structure calculations. In BiTeCl, a clear
pressure-induced phase transition at 6~GPa leads to a different ground state.
For BiTeBr, the pressure evolution is more subtle, and we discuss the
possibility of closing and reopening of the band gap. Our data is consistent
with a Weyl phase in BiTeBr at 56~GPa, followed by the onset of a structural
phase transition at 7~GPa.Comment: are welcom
- …