15,714 research outputs found

    Nonperturbative resonant strong field ionization of atomic hydrogen

    Full text link
    We investigate resonant strong field ionization of atomic hydrogen with respect to the 1s-2p-transition. By "strong" we understand that Rabi-periods are executed on a femtosecond time scale. Ionization and AC Stark shifts modify the bound state dynamics severely, leading to nonperturbative signatures in the photoelectron spectra. We introduce an analytical model, capable of predicting qualitative features in the photoelectron spectra such as the positions of the Autler-Townes peaks for modest field strengths. Ab initio solutions of the time-dependent Schroedinger equation show a pronounced shift and broadening of the left Autler-Townes peak as the field strength is increased. The right peak remains rather narrow and shifts less. This result is analyzed and explained with the help of exact AC Stark shifts and ionization rates obtained from Floquet theory. Finally, it is demonstrated that in the case of finite pulses as short as 20fs the Autler-Townes duplet can still be resolved. The fourth generation light sources under construction worldwide will provide bright, coherent radiation with photon energies ranging from a tenth of a meV up to tens of keV, hence covering the regime studied in the paper so that measurements of nonperturbative, relative AC Stark shifts should become feasible with these new light sources.Comment: 16 pages, 11 figures, IOP styl

    Spin transfer torque on magnetic insulators

    Full text link
    Recent experimental and theoretical studies focus on spin-mediated heat currents at interfaces between normal metals and magnetic insulators. We resolve conflicting estimates for the order of magnitude of the spin transfer torque by first-principles calculations. The spin mixing conductance G^\uparrow\downarrow of the interface between silver and the insulating ferrimagnet Yttrium Iron Garnet (YIG) is dominated by its real part and of the order of 10^14 \Omega^-1m^-2, i.e. close to the value for intermetallic interface, which can be explained by a local spin model.Comment: 4 pages, 4 figures, 2 table

    LERW as an example of off-critical SLEs

    Get PDF
    Two dimensional loop erased random walk (LERW) is a random curve, whose continuum limit is known to be a Schramm-Loewner evolution (SLE) with parameter kappa=2. In this article we study ``off-critical loop erased random walks'', loop erasures of random walks penalized by their number of steps. On one hand we are able to identify counterparts for some LERW observables in terms of symplectic fermions (c=-2), thus making further steps towards a field theoretic description of LERWs. On the other hand, we show that it is possible to understand the Loewner driving function of the continuum limit of off-critical LERWs, thus providing an example of application of SLE-like techniques to models near their critical point. Such a description is bound to be quite complicated because outside the critical point one has a finite correlation length and therefore no conformal invariance. However, the example here shows the question need not be intractable. We will present the results with emphasis on general features that can be expected to be true in other off-critical models.Comment: 45 pages, 2 figure

    Stress engineering at the nanometer scale: Two-component adlayer stripes

    Full text link
    Spontaneously formed equilibrium nanopatterns with long-range order are widely observed in a variety of systems, but their pronounced temperature dependence remains an impediment to maintain such patterns away from the temperature of formation. Here, we report on a highly ordered stress-induced stripe pattern in a two-component, Pd-O, adsorbate monolayer on W(110), produced at high temperature and identically preserved at lower temperatures. The pattern shows a tunable period (down to 16 nm) and orientation, as predicted by a continuum model theory along with the surface stress and its anisotropy found in our DFT calculations. The control over thermal fluctuations in the stripe formation process is based on the breaking/restoring of ergodicity in a high-density lattice gas with long-range interactions upon turning off/on particle exchange with a heat bath.Comment: 6 pages, 4 figure

    Stationarity of SLE

    Full text link
    A new method to study a stopped hull of SLE(kappa,rho) is presented. In this approach, the law of the conformal map associated to the hull is invariant under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur

    Magnetic Order in the 2D Heavy-Fermion System CePt2In7 studied by muSR

    Full text link
    The low-temperature microscopic magnetic properties of the quasi-2D heavyfermion compound, CePt2In7 are investigated by using a positive muon-spin rotation and relaxation (?muSR) technique. Clear evidence for the formation of a commensurate antiferromagnetic order below TN=5.40 K is presented. The magnetic order parameter is shown to fit well to a modified BSC gap-energy function in a strong-coupling scenario.Comment: Accepted in Journal of Physics: Conference Series (2014

    First-principles scattering matrices for spin-transport

    Get PDF
    Details are presented of an efficient formalism for calculating transmission and reflection matrices from first principles in layered materials. Within the framework of spin density functional theory and using tight-binding muffin-tin orbitals, scattering matrices are determined by matching the wave-functions at the boundaries between leads which support well-defined scattering states and the scattering region. The calculation scales linearly with the number of principal layers N in the scattering region and as the cube of the number of atoms H in the lateral supercell. For metallic systems for which the required Brillouin zone sampling decreases as H increases, the final scaling goes as H^2*N. In practice, the efficient basis set allows scattering regions for which H^{2}*N ~ 10^6 to be handled. The method is illustrated for Co/Cu multilayers and single interfaces using large lateral supercells (up to 20x20) to model interface disorder. Because the scattering states are explicitly found, ``channel decomposition'' of the interface scattering for clean and disordered interfaces can be performed.Comment: 22 pages, 13 figure

    ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM

    Get PDF
    Two-way model coupling is important for representing the mutual interactions and feedbacks between atmosphere and ocean dynamics. This work presents the development of the two-way coupled model system ICONGETM, consisting of the atmosphere model ICON and the ocean model GETM. ICONGETM is built on the latest NUOPC coupling software with flexible data exchange and conservative interpolation via ESMF exchange grids. With ICON providing a state-of-the-art kernel for numerical weather prediction on an unstructured mesh and GETM being an established coastal ocean model, ICONGETM is especially suited for high-resolution studies. For demonstration purposes the newly developed model system has been applied to a coastal upwelling scenario in the central Baltic Sea

    Shape-Function Effects and Split Matching in B-> Xs l+ l-

    Full text link
    We derive the triply differential spectrum for the inclusive rare decay B -> Xs l+ l- in the shape function region, in which Xs is jet-like with mX2≲mbΛQCDmX^2 \lesssim mb \Lambda_QCD. Experimental cuts make this a relevant region. The perturbative and non-perturbative parts of the matrix elements can be defined with the Soft-Collinear Effective Theory, which is used to incorporate alphas corrections consistently. We show that, with a suitable power counting for the dilepton invariant mass, the same universal jet and shape functions appear as in B-> Xs gamma and B-> Xu l nu decays. Parts of the usual alphas(m_b) corrections go into the jet function at a lower scale, and parts go into the non-perturbative shape function. For B -> Xs l+ l-, the perturbative series in alphas are of a different character above and below mu=mb. We introduce a ``split matching'' method that allows the series in these regions to be treated independently.Comment: 33 pages; journal versio
    • …
    corecore