13,354 research outputs found

    A Kohn-Sham system at zero temperature

    Get PDF
    An one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor {nano}structures and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues of the Schr\"odinger operator with effective Kohn-Sham potential and obtain W1,2W^{1,2}-bounds of the associated particle density operator. Afterwards, compactness and continuity results allow to apply Schauder's fixed point theorem. In case of vanishing exchange-correlation potential uniqueness is shown by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero.Comment: 27 page

    The Bispectrum of IRAS Galaxies

    Full text link
    We compute the bispectrum for the galaxy distribution in the IRAS QDOT, 2Jy, and 1.2Jy redshift catalogs for wavenumbers 0.05<k<0.2 h/Mpc and compare the results with predictions from gravitational instability in perturbation theory. Taking into account redshift space distortions, nonlinear evolution, the survey selection function, and discreteness and finite volume effects, all three catalogs show evidence for the dependence of the bispectrum on configuration shape predicted by gravitational instability. Assuming Gaussian initial conditions and local biasing parametrized by linear and non-linear bias parameters b_1 and b_2, a likelihood analysis yields 1/b_1 = 1.32^{+0.36}_{-0.58}, 1.15^{+0.39}_{-0.39} and b_2/b_1^2=-0.57^{+0.45}_{-0.30}, -0.50^{+0.31}_{-0.51}, for the for the 2Jy and 1.2Jy samples, respectively. This implies that IRAS galaxies trace dark matter increasingly weakly as the density contrast increases, consistent with their being under-represented in clusters. In a model with chi^2 non-Gaussian initial conditions, the bispectrum displays an amplitude and scale dependence different than that found in the Gaussian case; if IRAS galaxies do not have bias b_1> 1 at large scales, \chi^2 non-Gaussian initial conditions are ruled out at the 95% confidence level. The IRAS data do not distinguish between Lagrangian or Eulerian local bias.Comment: 30 pages, 11 figure

    One-dimensional transport in polymer nanofibers

    Full text link
    We report our transport studies in quasi one-dimensional (1D) conductors - helical polyacetylene fibers doped with iodine and the data analysis for other polymer single fibers and tubes. We found that at 30 K < T < 300 K the conductance and the current-voltage characteristics follow the power law: G(T) ~ T^alpha with alpha ~ 2.2-7.2 and I(V) ~ V^betta with betta ~ 2-5.7. Both G(T) and I(V) show the features characteristic of 1D systems such as Luttinger liquid or Wigner crystal. The relationship between our results and theories for tunneling in 1D systems is discussed.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Letter

    Implications of Pioneer-2 magnetic field models for Jupiter's decametric radio mission

    Get PDF
    The geometry and electron gyrofrequency were calculated for both the North and South feet of the Io-threaded flux tube at several altitudes as a function of sub-Io longitude for various multipole field models. The models predict a maximum surface gyrofrequency equal to the observed high frequency limit of the decameter-wave radio emission (DAM) and tend to favor a mechanism involving transverse propagation from a source in the Northern hemisphere. Calculations indicate that the beaming pattern of the emission may be determined by reflection from the ionosphere rather than by inherent beaming from the source region

    Spectroscopy of a fractional Josephson vortex molecule

    Full text link
    In long Josephson junctions with multiple discontinuities of the Josephson phase, fractional vortex molecules are spontaneously formed. At each discontinuity point a fractional Josephson vortex carrying a magnetic flux Φ<Φ0|\Phi|<\Phi_0, Φ02.07×1015\Phi_0\approx 2.07\times 10^{-15} Wb being the magnetic flux quantum, is pinned. Each vortex has an oscillatory eigenmode with a frequency that depends on Φ/Φ0\Phi/\Phi_0 and lies inside the plasma gap. We experimentally investigate the dependence of the eigenfrequencies of a two-vortex molecule on the distance between the vortices, on their topological charge =2πΦ/Φ0\wp=2\pi\Phi/\Phi_0 and on the bias current γ\gamma applied to the Josephson junction. We find that with decreasing distance between vortices, a splitting of the eigenfrequencies occurs, that corresponds to the emergence of collective oscillatory modes of both vortices. We use a resonant microwave spectroscopy technique and find good agreement between experimental results and theoretical predictions.Comment: submitted to Phys. Rev.

    Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil

    Get PDF
    Molibility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from oils to surface waters. To study the sorption an mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agircultural Humic Hapludult was investigated and a kinetic model applicable in field-scale model tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrtions (0-4.7 mmol L-1). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L-1, the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium". The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics

    Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations

    Get PDF
    Models of cosmic inflation suggest that our universe underwent an early phase of accelerated expansion, driven by the dynamics of one or more scalar fields. Inflationary models make specific, quantitative predictions for several observable quantities, including particular patterns of temperature anistropies in the cosmic microwave background radiation. Realistic models of high-energy physics include many scalar fields at high energies. Moreover, we may expect these fields to have nonminimal couplings to the spacetime curvature. Such couplings are quite generic, arising as renormalization counterterms when quantizing scalar fields in curved spacetime. In this chapter I review recent research on a general class of multifield inflationary models with nonminimal couplings. Models in this class exhibit a strong attractor behavior: across a wide range of couplings and initial conditions, the fields evolve along a single-field trajectory for most of inflation. Across large regions of phase space and parameter space, therefore, models in this general class yield robust predictions for observable quantities that fall squarely within the "sweet spot" of recent observations.Comment: 17pp, 2 figs. References added to match the published version. Published in {\it At the Frontier of Spacetime: Scalar-Tensor Theory, Bell's Inequality, Mach's Principle, Exotic Smoothness}, ed. T. Asselmeyer-Maluga (Springer, 2016), pp. 41-57, in honor of Carl Brans's 80th birthda

    IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega

    Get PDF
    The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is compared to the mass density field as reconstructed by the POTENT method from the Mark III catalog of peculiar velocities. The reconstruction is done with Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately 10-26 independent samples. Random and systematic errors are estimated from multiple realizations of mock catalogs drawn from a simulation that mimics the observed density field in the local universe. The relationship between the two density fields is found to be consistent with gravitational instability theory in the mildly nonlinear regime and a linear biasing relation between galaxies and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume, suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other estimates of beta suggests scale-dependence in the biasing relation for IRAS galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The Astrophysical Journa
    corecore