6 research outputs found

    Magnetic field evolution in interacting galaxies

    Get PDF
    Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. We selected 16 systems of interacting galaxies and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15muG) as interaction advances, then it increases up to 2x, peaks at the nuclear coalescence (25muG), and decreases again, down to 5-6muG, for the post-merger remnants. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. The process of strong gravitational interactions can efficiently magnetize the merger's surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23 degrees), and make an association of the observed UHECRs with the sites of their origin very uncertain.Comment: 17 pages, 16 figures, 5 tables. Published in Astronomy and Astrophysics, minor changes to v

    Carbon-13 longitudinal relaxation time measurements and DFT-GIAO NMR computations for two ammonium ions of a tetraazamacrocyclic scorpiand system

    Get PDF
    Spin-lattice relaxation times, T1s, for 13C nuclei in two cations Hn1n+ (n = 1, 5)of N-(2-amino-ethyl)-cyclam (1, scorpiand) were determined by means of 13C{1H} NMR experiments in aqueous solution at pH 11.5 and 0.2. The theoretical study [modeling with OPLS-AA, B3LYP/6-31G(d) geometry optimizations, dispersion-corrected energies (DFT-D3), and DFT-GIAO predictions of the NMR chemical shifts (including an IEF-PCM simulation of hydration)] was also done for several conformers of the tautomer iso-H414+ not investigated before. The binding directions in protonated polyamino receptors necessary for efficient complexation of the nitrate anion(s) were briefly outlined, as well. All these results were discussed in terms of 'abnormal' 13C chemical shift changes found previously for the side-chain carbons of amine 1 in strongly acidic solution (HNO3). In conclusion, an earlier proposal of its association with NO3- at pH=1 was rejected. Instead, the participation of small amounts of a microspecies iso-H414+Dhydr under such conditions can be proposed.Publikacja w ramach programu Springer Open Choice/Open Access finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego i realizowanego w ramach umowy na narodową licencję akademicką na czasopisma Springer w latach 2010-2013
    corecore