2,305 research outputs found

    The DiskMass Survey. X. Radio synthesis imaging of spiral galaxies

    Get PDF
    We present results from 21 cm radio synthesis imaging of 28 spiral galaxies from the DiskMass Survey obtained with the VLA, WSRT, and GMRT facilities. We detail the observations and data reduction procedures and present a brief analysis of the radio data. We construct 21 cm continuum images, global HI emission-line profiles, column-density maps, velocity fields, and position-velocity diagrams. From these we determine star formation rates (SFRs), HI line widths, total HI masses, rotation curves, and azimuthally-averaged radial HI column-density profiles. All galaxies have an HI disk that extends beyond the readily observable stellar disk, with an average ratio and scatter of R_{HI}/R_{25}=1.35+/-0.22, and a majority of the galaxies appear to have a warped HI disk. A tight correlation exists between total HI mass and HI diameter, with the largest disks having a slightly lower average column density. Galaxies with relatively large HI disks tend to exhibit an enhanced stellar velocity dispersion at larger radii, suggesting the influence of the gas disk on the stellar dynamics in the outer regions of disk galaxies. We find a striking similarity among the radial HI surface density profiles, where the average, normalized radial profile of the late-type spirals is described surprisingly well with a Gaussian profile. These results can be used to estimate HI surface density profiles in galaxies that only have a total HI flux measurement. We compare our 21 cm radio continuum luminosities with 60 micron luminosities from IRAS observations for a subsample of 15 galaxies and find that these follow a tight radio-infrared relation, with a hint of a deviation from this relation at low luminosities. We also find a strong correlation between the average SFR surface density and the K-band surface brightness of the stellar disk.Comment: 22 pages + Appendix, 16 figures + Atlas, 5 tables. Accepted for publication in Astronomy & Astrophysic

    How can I improve patient adherence to prescribed medication?

    Get PDF
    Two randomized clinical trials have shown that simplified dosing schedules have improved patient adherence to medication as prescribed. Some, but not all, randomized controlled trials show multidimensional interventions can also improve adherence. These interventions include combinations of patient and family education, home monitoring of disease status, and increased convenience of care, such as workplace access. (Grade of Recommendation: B, based on randomized controlled trials

    The DiskMass Survey. VIII. On the Relationship Between Disk Stability and Star Formation

    Full text link
    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q_RW), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of sigma_z/sigma_R = 0.51^{+0.36}_{-0.25} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q_RW = 2.0 +/- 0.9. We also find that the disk-averaged star-formation-rate surface density (Sigma-dot_e,*) is correlated with the disk-averaged gas and stellar mass surface densities (Sigma_e,g and Sigma_e,*) and anti-correlated with Q_RW. We show that an anti-correlation between Sigma-dot_e,* and Q_RW can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Sigma-dot_e,* is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Sigma-dot_e,*/Sigma_e,g/sqrt(Sigma_e,*). Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.Comment: Accepted for publication in ApJ. 15 pages, 6 figures, 2 tables. An electronic version of Table 1 is available by request, or at http://www.astro.rug.nl/~westfall/research/dmVIII_table1.tx

    Influence of momentum-dependent interactions on balance energy and mass dependence

    Full text link
    We aim to study the role of momentum-dependent interactions in transverse flow as well as in its disappearance. For the present study, central collisions involving mass between 24 and 394 are considered. We find that momentum-dependent interactions have different impact in lighter colliding nuclei compared to heavier colliding nuclei. In lighter nuclei, the contribution of mean field towards the flow is smaller compared to heavier nuclei where binary nucleon-nucleon collisions dominate the scene. The inclusion of momentum-dependent interactions also explains the energy of vanishing flow in 12C+12C^{12}C+^{12}C reaction which was not possible with the static equation of state. An excellent agreement of our theoretical attempt is found for balance energy with experimental data throughout the periodic table

    Heavy ion collisions: Correlations and Fluctuations in particle production

    Full text link
    Correlations and fluctuations (the latter are directly related to the 2-particle correlations) is one of the important directions in analysis of heavy ion collisions. At the current stage of RHIC exploration, when the details matter, basically any physics question is addressed with help of correlation techniques. In this talk I start with a general introduction to the correlation and fluctuation formalism and discuss weak and strong sides of different type of observables. In more detail, I discuss the two-particle ptp_t correlations/\mpt fluctuations. In spite of not observing any dramatic changes in the event-by-event fluctuations with energy, which would indicate a possible phase transition, such correlations measurements remain an interesting and important subject, bringing valuable information. Lastly, I show how radial flow can generate characteristic azimuthal, transverse momentum and rapidity correlations, which could qualitatively explain many of recently observed phenomena in nuclear collisions.Comment: 8 pages, 8 figures. Invited talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, February 8-12, 2005, Salt Lake City, Kolkata, Indi

    The Extended Shapes of Galactic Satellites

    Full text link
    We are exploring the extended stellar distributions of Galactic satellite galaxies and globular clusters. For seven objects studied thus far, the observed profile departs from a King function at large r, revealing a ``break population'' of stars. In our sample, the relative density of the ``break'' correlates to the inferred M/L of these objects. We discuss opposing hypotheses for this trend: (1) Higher M/L objects harbor more extended dark matter halos that support secondary, bound, stellar ``halos''. (2) The extended populations around dwarf spheroidals (and some clusters) consist of unbound, extratidal debris from their parent objects, which are undergoing various degrees of tidal disruption. In this scenario, higher M/L ratios reflect higher degrees of virial non-equilibrium in the parent objects, thus invalidating a precept underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of Galaxies and Their Halo

    Disappearance of Transverse Flow in Central Collisions for Heavier Nuclei

    Full text link
    For the first time, mass dependence of balance energy only for heavier systems has been studied. Our results are in excellent agreement with the data which allow us to predict the balance energy of U+U, for the first time, around 37-39 MeV/nucleon. Also our results indicate a hard equation of state along with nucleon-nucleon cross-section around 40 mb.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Measurement of complex fragments and clues to the entropy production from 42-137-MeV/nucleon Ar + Au

    Get PDF
    Intermediate-rapidity fragments with A=1-14 emitted from 42-137-MeV/nucleon Ar + Au have been measured. Evidence is presented that these fragments arise from a common moving source. Entropy values are extracted from the mass distributions by use of quantum statistical and Hauser-Feshbach theories. The extracted entropy values of S/A≈2-2.4 are much smaller than the values expected from measured deuteron-to-proton ratios, but are still considerably higher than theoretically predicted values

    SparsePak: A Formatted Fiber Field-Unit for The WIYN Telescope Bench Spectrograph. II. On-Sky Performance

    Full text link
    We present a performance analysis of SparsePak and the WIYN Bench Spectrograph for precision studies of stellar and ionized gas kinematics of external galaxies. We focus on spectrograph configurations with echelle and low-order gratings yielding spectral resolutions of ~10000 between 500-900nm. These configurations are of general relevance to the spectrograph performance. Benchmarks include spectral resolution, sampling, vignetting, scattered light, and an estimate of the system absolute throughput. Comparisons are made to other, existing, fiber feeds on the WIYN Bench Spectrograph. Vignetting and relative throughput are found to agree with a geometric model of the optical system. An aperture-correction protocol for spectrophotometric standard-star calibrations has been established using independent WIYN imaging data and the unique capabilities of the SparsePak fiber array. The WIYN point-spread-function is well-fit by a Moffat profile with a constant power-law outer slope of index -4.4. We use SparsePak commissioning data to debunk a long-standing myth concerning sky-subtraction with fibers: By properly treating the multi-fiber data as a ``long-slit'' it is possible to achieve precision sky subtraction with a signal-to-noise performance as good or better than conventional long-slit spectroscopy. No beam-switching is required, and hence the method is efficient. Finally, we give several examples of science measurements which SparsePak now makes routine. These include Hα\alpha velocity fields of low surface-brightness disks, gas and stellar velocity-fields of nearly face-on disks, and stellar absorption-line profiles of galaxy disks at spectral resolutions of ~24,000.Comment: To appear in ApJSupp (Feb 2005); 19 pages text; 7 tables; 27 figures (embedded); high-resolution version at http://www.astro.wisc.edu/~mab/publications/spkII_pre.pd

    Light particle spectra from 35 MeV/nucleon 12C-induced reactions on 197Au

    Get PDF
    Energy spectra for p, d, t, 3He, 4He, and 6He from the reaction 12C+197Au at 35 MeV/nucleon are presented. A common intermediate rapidity source is identified using a moving source fit to the spectra that yields cross sections which are compared to analogous data at other bombarding energies and to several different models. The excitation function of the composite to proton ratios is compared with quantum statistical, hydrodynamic, and thermal models
    • …
    corecore