We aim to study the role of momentum-dependent interactions in transverse
flow as well as in its disappearance. For the present study, central collisions
involving mass between 24 and 394 are considered. We find that
momentum-dependent interactions have different impact in lighter colliding
nuclei compared to heavier colliding nuclei. In lighter nuclei, the
contribution of mean field towards the flow is smaller compared to heavier
nuclei where binary nucleon-nucleon collisions dominate the scene. The
inclusion of momentum-dependent interactions also explains the energy of
vanishing flow in 12C+12C reaction which was not possible with the
static equation of state. An excellent agreement of our theoretical attempt is
found for balance energy with experimental data throughout the periodic table