155 research outputs found

    Long-term human hematopoiesis in the SCID-hu mouse.

    Get PDF
    Coimplantation of small fragments of human fetal thymus and fetal liver into immunodeficient SCID mice resulted in the formation of a unique structure (Thy/Liv). Thereafter, the SCID-hu mice showed reproducible and long-term reconstitution of human hematopoietic activity. For periods lasting 5-11 mo after transplantation, active T lymphopoiesis was observed inside the grafts and cells that were negative for T cell markers were found to have colony-forming units for granulocyte/macrophage (CFU-GM) and erythroid burst-forming unit (BFU-E) activity in the methylcellulose colony assay. In addition, structures similar to normal human bone marrow were observed inside the Thy/Liv grafts, consisting of blast cells, mature and immature forms of myelomonocytic cells, and megakaryocytes. These data indicate long-term maintenance, in vivo, of human progenitor cells for the T lymphoid, myelomonocytic, erythroid, and megakaryocytic lineages. The role of the implanted fetal liver fragments was analyzed using HLA-mismatched Thy/Liv implants. The HLA type of the liver donor was found on T cells and macrophages in the graft. In addition, cells grown in the methylcellulose colony assay and cells in a bone marrow-like structure, the thymic isle, expressed the HLA type of the liver donor. Thus, the Thy/Liv implants provided a microenvironment in which to follow human hematopoietic progenitor cells for multiple lineages. The formation of the Thy/Liv structures also results in a continuous source of human T cells in the peripheral circulation of the SCID-hu mouse. Though present for 5-11 mo, these cells did not engage in a xenograft (graft-versus-host) reaction. This animal model, the first in which multilineage human hematopoietic activity is maintained for long periods of time, should be useful for the analysis of human hematopoiesis in vivo

    Management of bone metastasis and cancer treatment-induced bone loss during the COVID-19 pandemic: An international perspective and recommendations

    Get PDF
    Optimum management of patients with cancer during the COVID-19 pandemic has proved extremely challenging. Patients, clinicians and hospital authorities have had to balance the risks to patients of attending hospital, many of whom are especially vulnerable, with the risks of delaying or modifying cancer treatment. Those whose care has been significantly impacted include patients suffering from the effects of cancer on bone, where delivering the usual standard of care for bone support has often not been possible and clinicians have been forced to seek alternative options for adequate management. At a virtual meeting of the Cancer and Bone Society in July 2020, an expert group shared experiences and solutions to this challenge, following which a questionnaire was sent internationally to the symposium\u27s participants, to explore the issues faced and solutions offered. 70 respondents, from 9 countries (majority USA, 39%, followed by UK, 19%) included 50 clinicians, spread across a diverse range of specialties (but with a high proportion, 64%, of medical oncologists) and 20 who classified themselves as non-clinical (solely lab-based). Spread of clinician specialty across tumour types was breast (65%), prostate (27%), followed by renal, myeloma and melanoma. Analysis showed that management of metastatic bone disease in all solid tumour types and myeloma, adjuvant bisphosphonate breast cancer therapy and cancer treatment induced bone loss, was substantially impacted. Respondents reported delays to routine CT scans (58%), standard bone scans (48%) and MRI scans (46%), though emergency scans were less affected. Delays in palliative radiotherapy for bone pain were reported by 31% of respondents with treatments often involving only a single dose without fractionation. Delays to, or cancellation of, prophylactic surgery for bone pain were reported by 35% of respondents. Access to treatments with intravenous bisphosphonates and subcutaneous denosumab was a major problem, mitigated by provision of drug administration at home or in a local clinic, reduced frequency of administration or switching to oral bisphosphonates taken at home. The questionnaire also revealed damaging delays or complete stopping of both clinical and laboratory research. In addition to an analysis of the questionnaire, this paper presents a rationale and recommendations for adaptation of the normal guidelines for protection of bone health during the pandemic

    The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects

    Get PDF
    PMCID: PMC3771507.-- et al.Proteasome inhibitors (PIs), namely bortezomib, have become a cornerstone therapy for multiple myeloma (MM), potently reducing tumor burden and inhibiting pathologic bone destruction. In clinical trials, carfilzomib, a next generation epoxyketone-based irreversible PI, has exhibited potent anti-myeloma efficacy and decreased side effects compared with bortezomib. Carfilzomib and its orally bioavailable analog oprozomib, effectively decreased MM cell viability following continual or transient treatment mimicking in vivo pharmacokinetics. Interactions between myeloma cells and the bone marrow (BM) microenvironment augment the number and activity of bone-resorbing osteoclasts (OCs) while inhibiting bone-forming osteoblasts (OBs), resulting in increased tumor growth and osteolytic lesions. At clinically relevant concentrations, carfilzomib and oprozomib directly inhibited OC formation and bone resorption in vitro, while enhancing osteogenic differentiation and matrix mineralization. Accordingly, carfilzomib and oprozomib increased trabecular bone volume, decreased bone resorption and enhanced bone formation in non-tumor bearing mice. Finally, in mouse models of disseminated MM, the epoxyketone-based PIs decreased murine 5TGM1 and human RPMI-8226 tumor burden and prevented bone loss. These data demonstrate that, in addition to anti-myeloma properties, carfilzomib and oprozomib effectively shift the bone microenvironment from a catabolic to an anabolic state and, similar to bortezomib, may decrease skeletal complications of MM.This research was supported by grants from the National Institutes of Health (T32CA113275:MAH; P01CA100730:KNW; P50CA94056:DP-W), the St Louis Men’s Group Against Cancer (KNW), the Holway Myeloma Fund (KNW), the Spanish MICINN-ISCIII (PI081825), the Fundación de Investigación Médica Mutua Madrileña (AP27262008), the Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, the Spanish Myeloma Network Program (RD06/0020/0006 and RD06/0020/0041) and Spanish FIS (PS09/01897).Peer Reviewe

    The ARF Tumor Suppressor Regulates Bone Remodeling and Osteosarcoma Development in Mice

    Get PDF
    The ARF tumor suppressor regulates p53 as well as basic developmental processes independent of p53, including osteoclast activation, by controlling ribosomal biogenesis. Here we provide evidence that ARF is a master regulator of bone remodeling and osteosarcoma (OS) development in mice. Arf-/- mice displayed increased osteoblast (OB) and osteoclast (OC) activity with a significant net increase in trabecular bone volume. The long bones of Arf-/- mice had increased expression of OB genes while Arf-/- OB showed enhanced differentiation in vitro. Mice transgenic for the Tax oncogene develop lymphocytic tumors with associated osteolytic lesions, while Tax+Arf-/- mice uniformly developed spontaneous OS by 7 months of age. Tax+Arf-/- tumors were well differentiated OS characterized by an abundance of new bone with OC recruitment, expressed OB markers and displayed intact levels of p53 mRNA and reduced Rb transcript levels. Cell lines established from OS recapitulated characteristics of the primary tumor, including the expression of mature OB markers and ability to form mineralized tumors when transplanted. Loss of heterozygosity in OS tumors arising in Tax+Arf+/- mice emphasized the necessity of ARF-loss in OS development. Hypothesizing that inhibition of ARF-regulated bone remodeling would repress development of OS, we demonstrated that treatment of Tax+Arf-/- mice with zoledronic acid, a bisphosphonate inhibitor of OC activity and repressor of bone turnover, prevented or delayed the onset of OS. These data describe a novel role for ARF as a regulator of bone remodeling through effects on both OB and OC. Finally, these data underscore the potential of targeting bone remodeling as adjuvant therapy or in patients with genetic predispositions to prevent the development of OS

    Management of bone metastasis and cancer treatment-induced bone loss during the COVID-19 pandemic: An international perspective and recommendations

    Get PDF
    Optimum management of patients with cancer during the COVID-19 pandemic has proved extremely challenging. Patients, clinicians and hospital authorities have had to balance the risks to patients of attending hospital, many of whom are especially vulnerable, with the risks of delaying or modifying cancer treatment. Those whose care has been significantly impacted include patients suffering from the effects of cancer on bone, where delivering the usual standard of care for bone support has often not been possible and clinicians have been forced to seek alternative options for adequate management. At a virtual meeting of the Cancer and Bone Society in July 2020, an expert group shared experiences and solutions to this challenge, following which a questionnaire was sent internationally to the symposium's participants, to explore the issues faced and solutions offered. 70 respondents, from 9 countries (majority USA, 39%, followed by UK, 19%) included 50 clinicians, spread across a diverse range of specialties (but with a high proportion, 64%, of medical oncologists) and 20 who classified themselves as non-clinical (solely lab-based). Spread of clinician specialty across tumour types was breast (65%), prostate (27%), followed by renal, myeloma and melanoma. Analysis showed that management of metastatic bone disease in all solid tumour types and myeloma, adjuvant bisphosphonate breast cancer therapy and cancer treatment induced bone loss, was substantially impacted. Respondents reported delays to routine CT scans (58%), standard bone scans (48%) and MRI scans (46%), though emergency scans were less affected. Delays in palliative radiotherapy for bone pain were reported by 31% of respondents with treatments often involving only a single dose without fractionation. Delays to, or cancellation of, prophylactic surgery for bone pain were reported by 35% of respondents. Access to treatments with intravenous bisphosphonates and subcutaneous denosumab was a major problem, mitigated by provision of drug administration at home or in a local clinic, reduced frequency of administration or switching to oral bisphosphonates taken at home. The questionnaire also revealed damaging delays or complete stopping of both clinical and laboratory research. In addition to an analysis of the questionnaire, this paper presents a rationale and recommendations for adaptation of the normal guidelines for protection of bone health during the pandemic

    Effects of neoadjuvant chemotherapy with or without zoledronic acid on pathological response: A meta-analysis of randomised trials

    Get PDF
    Purpose The addition of bisphosphonates to adjuvant therapy improves survival in postmenopausal breast cancer (BC) patients. We report a meta-analysis of four randomised trials of neoadjuvant chemotherapy (CT) +/– zoledronic acid (ZA) in stage II/III BC to investigate the potential for enhancing the pathological response. Methods Individual patient data from four prospective randomised clinical trials reporting the effect of the addition of ZA on the pathological response after neoadjuvant CT were pooled. Primary outcomes were pathological complete response in the breast (pCRb) and in the breast and lymph nodes (pCR). Trial-level and individual patient data meta-analyses were done. Predefined subgroup-analyses were performed for postmenopausal women and patients with triple-negative BC. Results pCRb and pCR data were available in 735 and 552 patients respectively. In the total study population ZA addition to neoadjuvant CT did not increase pCRb or pCR rates. However, in postmenopausal patients, the addition of ZA resulted in a significant, near doubling of the pCRb rate (10.8% for CT only versus 17.7% with CT+ZA; odds ratio [OR] 2.14, 95% confidence interval [CI] 1.01–4.55) and a non-significant benefit of the pCR rate (7.8% for CT only versus 14.6% with CT+ZA; OR 2.62, 95% CI 0.90–7.62). In patients with triple-negative BC a trend was observed favouring CT+ZA. Conclusion This meta-analysis shows no impact from the addition of ZA to neoadjuvant CT on pCR. However, as has been seen in the adjuvant setting, the addition of ZA to neoadjuvant CT may augment the effects of CT in postmenopausal patients with BC

    Subcellular localization of Mitf in monocytic cells

    Get PDF
    Microphthalmia-associated transcription factor (Mitf) is a transcription factor that plays an important role in regulating the development of several cell lineages. The subcellular localization of Mitf is dynamic and is associated with its transcription activity. In this study, we examined factors that affect its subcellular localization in cells derived from the monocytic lineage since Mitf is present abundantly in these cells. We identified a domain encoded by Mitf exon 1B1b to be important for Mitf to commute between the cytoplasm and the nucleus. Deletion of this domain disrupts the shuttling of Mitf to the cytoplasm and results in its retention in the nucleus. M-CSF and RANKL both induce nuclear translocation of Mitf. We showed that Mitf nuclear transport is greatly influenced by ratio of M-CSF/Mitf protein expression. In addition, cell attachment to a solid surface also is needed for the nuclear transport of Mitf
    • …
    corecore