165 research outputs found

    Charge dynamics of Ca_{2-x}Na_{x}CuO_{2}Cl_{2} as a correlated electron system with the ideal tetragonal lattice

    Full text link
    We report the reflectivity and the resistivity measurement of Ca_{2-x}Na_{x}CuO_{2}Cl_{2} (CNCOC), which has a single-CuO2-plane lattice with no orthorhombic distortion. The doping dependence of the in-plane optical conductivity spectra for CNCOC is qualitatively the same to those of other cuprates, but a slight difference between CNCOC and LSCO, i.e., the absence of the 1.5 eV peak in CNCOC, can be attributed to the smaller charge-stripe instability in CNCOC. The temperature dependence of the optical onductivity spectra of CNCOC has been analyzed both by the two-component model (Drude+Lorentzian) and by the one-component model (extended-Drude analysis). The latter analysis gives a universal trend of the scattering rate Gamma(omega) with doping. It was also found that Gamma(omega) shows a saturation behavior at high frequencies, whose origin is the same as that of resistivity saturation at high temperatures.Comment: 8 pages, 11 figures, to be published in Phys. Rev.

    Visualizing the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator

    Get PDF
    Superconductivity emerges from the cuprate antiferromagnetic Mott state with hole doping. The resulting electronic structure is not understood, although changes in the state of oxygen atoms appear paramount. Hole doping first destroys the Mott state yielding a weak insulator where electrons localize only at low temperatures without a full energy gap. At higher doping, the 'pseudogap', a weakly conducting state with an anisotropic energy gap and intra-unit-cell breaking of 90\degree-rotational (C4v) symmetry appears. However, a direct visualization of the emergence of these phenomena with increasing hole density has never been achieved. Here we report atomic-scale imaging of electronic structure evolution from the weak-insulator through the emergence of the pseudogap to the superconducting state in Ca2-xNaxCuO2Cl2. The spectral signature of the pseudogap emerges at lowest doping from a weakly insulating but C4v-symmetric matrix exhibiting a distinct spectral shape. At slightly higher hole-density, nanoscale regions exhibiting pseudogap spectra and 180\degree-rotational (C2v) symmetry form unidirectional clusters within the C4v-symmetric matrix. Thus, hole-doping proceeds by the appearance of nanoscale clusters of localized holes within which the broken-symmetry pseudogap state is stabilized. A fundamentally two-component electronic structure11 then exists in Ca2-xNaxCuO2Cl2 until the C2v-symmetric clusters touch at higher doping, and the long-range superconductivity appears.Comment: See the Nature Physics website for the published version available at http://dx.doi.org/10.1038/Nphys232

    Visualizing the atomic scale electronic structure of the Ca2CuO2Cl2 Mott insulator

    Full text link
    Although the mechanism of superconductivity in the cuprates remains elusive, it is generally agreed that at the heart of the problem is the physics of doped Mott insulators. The cuprate parent compound has one unpaired electron per Cu site, and is predicted by band theory to be a half-filled metal. The strong onsite Coulomb repulsion, however, prohibits electron hopping between neighboring sites and leads to a Mott insulator ground state with antiferromagnetic (AF) ordering. Charge carriers doped into the CuO2 plane destroy the insulating phase and superconductivity emerges as the carrier density is sufficiently high. The natural starting point for tackling high Tc superconductivity is to elucidate the electronic structure of the parent Mott insulator and the behavior of a single doped charge. Here we use a scanning tunneling microscope to investigate the atomic scale electronic structure of the Ca2CuO2Cl2 parent Mott insulator of the cuprates. The full electronic spectrum across the Mott-Hubbard gap is uncovered for the first time, which reveals the particle-hole symmetric and spatially uniform Hubbard bands. A single electron donated by surface defect is found to create a broad in-gap electronic state that is strongly localized in space with spatial characteristics intimately related to the AF spin background. The unprecedented real space electronic structure of the parent cuprate sheds important new light on the origion of high Tc superconductivity from the doped Mott insulator perspective.Comment: 26 pages, 4 figures, supplementary information include

    Sexually dimorphic gene expression in the heart of mice and men

    Get PDF
    The prevalence and clinical manifestation of several cardiovascular diseases vary considerably with sex and age. Thus, a better understanding of the molecular basis of these differences may represent a starting point for an improved gender-specific medicine. Despite the fact that sex-specific differences have been observed in the cardiovascular system of humans and animal models, systematic analyses of sexual dimorphisms at the transcriptional level in the healthy heart are missing. Therefore we performed gene expression profiling on mouse and human cardiac samples of both sexes and young as well as aged individuals and verified our results for a subset of genes using real-time polymerase chain reaction in independent left ventricular samples. To tackle the question whether sex differences are evolutionarily conserved, we also compared sexually dimorphic genes between both species. We found that genes located on sex chromosomes were the most abundant ones among the sexually dimorphic genes. Male-specific expression of Y-linked genes was observed in mouse hearts as well as in the human myocardium (e.g. Ddx3y, Eif2s3y and Jarid1d). Higher expression levels of X-linked genes were detected in female mice for Xist, Timp1 and Car5b and XIST, EIF2S3X and GPM6B in women. Furthermore, genes on autosomal chromosomes encoding cytochromes of the monoxygenase family (e.g. Cyp2b10), carbonic anhydrases (e.g. Car2 and Car3) and natriuretic peptides (e.g. Nppb) were identified with sex- and/or age-specific expression levels. This study underlines the relevance of sex and age as modifiers of cardiac gene expression

    Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists

    Get PDF
    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products
    corecore