8,246 research outputs found
The assessment of long-term orbital debris models
Existing long-term orbital debris models are assessed as a first step in the Air Force's effort to develop an Air Force long-term orbital debris model which can perform the following functions: (1) operate with the necessary accuracy at the relevant altitudes and orbital parameters; (2) benefit from new Air Force and non-Air Force debris measurements; and (3) accommodate current and future Air Force space scenarios. Model assessment results are shown for the NASA engineering model. The status of the NASA EVOLVE model assessment is discussed
NO adsorption and thermal behavior on Pd surfaces. A detailed comparative study
The adsorption and thermal behavior of NO on `flat¿ Pd(111) and `stepped¿ Pd(112) surfaces has been investigated by temperature programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), and electron stimulated desorption ion angular distribution (ESDIAD) techniques. NO is shown to molecularly adsorb on both Pd(111) and Pd(112) in the temperature range 100¿373 K. NO thermally desorbs predominantly molecularly from Pd(111) near 500 K with an activation energy and pre-exponential factor of desorption which strongly depend on the initial NO surface coverage. In contrast, NO decomposes substantially on Pd(112) upon heating, with relatively large amounts of N2 and N2O desorbing near 500 K, in addition to NO. The fractional amount of NO dissociation on Pd(112) during heating is observed to be a strong function of the initial NO surface coverage. HREELS results indicate that the thermal dissociation of NO on both Pd(111) and Pd(112) occurs upon annealing to 490 K, forming surface-bound O on both surfaces. Evidence for the formation of sub-surface O via NO thermal dissociation is found only on Pd(112), and is verified by dissociative O2 adsorption experiments. Both surface-bound O and sub-surface O dissolve into the Pd bulk upon annealing of both surfaces to 550 K. HREELS and ESDIAD data consistently indicate that NO preferentially adsorbs on the (111) terrace sites of Pd(112) at low coverages, filling the (001) step sites only at high coverage. This result was verified for adsorption temperatures in the range 100¿373 K. In addition, the thermal dissociation of NO on Pd(112) is most prevalent at low coverages, where only terrace sites are occupied by NO. Thus, by direct comparison to NO/Pd(111), this study shows that the presence of steps on the Pd(112) surface enhances the thermal dissociation of NO, but that adsorption at the step sites is not the criterion for this decomposition
Fast Searching in Packed Strings
Given strings and the (exact) string matching problem is to find all
positions of substrings in matching . The classical Knuth-Morris-Pratt
algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear
time which is optimal if we can only read one character at the time. However,
most strings are stored in a computer in a packed representation with several
characters in a single word, giving us the opportunity to read multiple
characters simultaneously. In this paper we study the worst-case complexity of
string matching on strings given in packed representation. Let be
the lengths and , respectively, and let denote the size of the
alphabet. On a standard unit-cost word-RAM with logarithmic word size we
present an algorithm using time O\left(\frac{n}{\log_\sigma n} + m +
\occ\right). Here \occ is the number of occurrences of in . For this improves the bound of the Knuth-Morris-Pratt algorithm.
Furthermore, if our algorithm is optimal since any
algorithm must spend at least \Omega(\frac{(n+m)\log
\sigma}{\log n} + \occ) = \Omega(\frac{n}{\log_\sigma n} + \occ) time to
read the input and report all occurrences. The result is obtained by a novel
automaton construction based on the Knuth-Morris-Pratt algorithm combined with
a new compact representation of subautomata allowing an optimal
tabulation-based simulation.Comment: To appear in Journal of Discrete Algorithms. Special Issue on CPM
200
Analysis of nuclear waste disposal in space, phase 3. Volume 1: Executive summary of technical report
The objectives, approach, assumptions, and limitations of a study of nuclear waste disposal in space are discussed with emphasis on the following: (1) payload characterization; (2) safety assessment; (3) health effects assessment; (4) long-term risk assessment; and (5) program planning support to NASA and DOE. Conclusions are presented for each task
Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report
The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing
Calculation of AGARD Wing 445.6 Flutter Using Navier-Stokes Aerodynamics
An unsteady, 3D, implicit upwind Euler/Navier-Stokes algorithm is here used to compute the flutter characteristics of Wing 445.6, the AGARD standard aeroelastic configuration for dynamic response, with a view to the discrepancy between Euler characteristics and experimental data. Attention is given to effects of fluid viscosity, structural damping, and number of structural model nodes. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. The V-g analysis indicates that fluid viscosity has a significant effect on the supersonic flutter boundary for this wing
Ergodic directional switching in mobile insect groups
We obtain a Fokker-Planck equation describing experimental data on the
collective motion of locusts. The noise is of internal origin and due to the
discrete character and finite number of constituents of the swarm. The
stationary probability distribution shows a rich phenomenology including
non-monotonic behavior of several order/disorder transition indicators in noise
intensity. This complex behavior arises naturally as a result of the randomness
in the system. Its counterintuitive character challenges standard
interpretations of noise induced transitions and calls for an extension of this
theory in order to capture the behavior of certain classes of biologically
motivated models. Our results suggest that the collective switches of the
group's direction of motion might be due to a random ergodic effect and, as
such, they are inherent to group formation.Comment: Physical Review Focus 26, July 201
CVD of CrO2: towards a lower temperature deposition process
We report on the synthesis of highly oriented a-axis CrO2 films onto (0001)
sapphire by atmospheric pressure CVD from CrO3 precursor, at growth
temperatures down to 330 degree Celsius, i.e. close to 70 degrees lower than in
published data for the same chemical system. The films keep the high quality
magnetic behaviour as those deposited at higher temperature, which can be
looked as a promising result in view of their use with thermally sensitive
materials, e.g. narrow band gap semiconductors.Comment: 13 pages, 4 figure
A theoretical framework for transitioning from patient-level to population-scale epidemiological dynamics:influenza A as a case study
Multi-scale epidemic forecasting models have been used to inform population-scale predictions with within-host models and/or infection data collected in longitudinal cohort studies. However, most multi-scale models are complex and require significant modelling expertise to run. We formulate an alternative multi-scale modelling framework using a compartmental model with multiple infected stages. In the large-compartment limit, our easy-to-use framework generates identical results compared to previous more complicated approaches. We apply our framework to the case study of influenza A in humans. By using a viral dynamics model to generate synthetic patient-level data, we explore the effects of limited and inaccurate patient data on the accuracy of population-scale forecasts. If infection data are collected daily, we find that a cohort of at least 40 patients is required for a mean population-scale forecasting error below 10%. Forecasting errors may be reduced by including more patients in future cohort studies or by increasing the frequency of observations for each patient. Our work, therefore, provides not only an accessible epidemiological modelling framework but also an insight into the data required for accurate forecasting using multi-scale models
Introduction to a Biological Systems Science
Biological systems analysis and biodynamic modelling of physiological and biological interrelationships in human body and mammal
- …