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ABSTRACT 24 

Multi-scale epidemic forecasting models have been used to inform population-scale 25 

predictions with within-host models and/or infection data collected in longitudinal cohort 26 

studies. However, most multi-scale models are complex and require significant modelling 27 

expertise to run. We formulate an alternative multi-scale modelling framework using a 28 

compartmental model with multiple infected stages. In the large-compartment limit, our 29 

easy-to-use framework generates identical results compared to previous more 30 

complicated approaches. We apply our framework to the case study of influenza A in 31 

humans. By using a viral dynamics model to generate synthetic patient-level data, we 32 

explore the effects of limited and inaccurate patient data on the accuracy of population-33 

scale forecasts. If infection data are collected daily, we find that a cohort of at least 40 34 

patients is required for a mean population-scale forecasting error below 10%. Forecasting 35 

errors may be reduced by including more patients in future cohort studies or by increasing 36 

the frequency of observations for each patient. Our work therefore provides not only an 37 

accessible epidemiological modelling framework, but also insight into the data required 38 

for accurate forecasting using multi-scale models. 39 

KEYWORDS 40 

epidemiological model; infectious disease outbreak forecasting; multi-scale model; 41 

nested model; longitudinal study; cohort study 42 

 43 

1. INTRODUCTION 44 

Infectious disease epidemics in humans, animals and plants have severe impacts [1–7]. 45 

Mathematical models are increasingly used to forecast the future dynamics of outbreaks 46 
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[7–9] and to plan interventions [10–13], while within-host models are used to understand 47 

the spread of infection at the individual host-level [14–17]. Standard population-scale 48 

epidemiological models assume that the infectiousness of each host is constant over 49 

the course of the infectious period [4], but in reality infectiousness will vary as the 50 

infection progresses through the host due to changing pathogen loads [18,19] and other 51 

factors including behavioural responses to infection [18,20]. 52 

 53 

Multi-scale models have been used to connect epidemiological dynamics at the patient-54 

level (within-host; we refer to “patients” throughout but similar ideas can be applied to 55 

pathogens of animals or plants) to those at the population-scale (between-host) [21–34]. 56 

These models (sometimes referred to as nested models [19,30]) tend to assume a 57 

specified relationship between the level of infection within a patient and the rate at 58 

which the patient transmits the pathogen to susceptible individuals [18,19,35]. A within-59 

host model, parameterised by fitting to patient data, is then used to determine the 60 

parameters of a population-scale model incorporating time-dependent infectiousness 61 

[19,35]. In addition to patient-level dynamics affecting population-scale transmission, 62 

there may be reciprocal feedback from the population-scale to the patient-level [19] – for 63 

example, if there are multiple co-circulating strains of the pathogen [24]. 64 

 65 

A recent review concluded that, while numerous multi-scale epidemiological modelling 66 

studies exist, relatively few include substantial use of data [29]. While one reason for 67 

this is the lack of widely available datasets [18,36], we contend that another contributing 68 

factor is that previous multi-scale modelling frameworks have been complex, making 69 
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them challenging to implement other than by highly specialist mathematical modellers. 70 

Such frameworks have often employed integro-differential equations (IDEs) 71 

[19,24,27,30,31,33,35,37], although alternatives such as individual-based stochastic 72 

models [12,23,25,26,38] have also been considered. IDEs are challenging to solve, 73 

requiring bespoke numerical methods [28]. Some studies using IDEs have involved 74 

explicit simulation of the full multi-scale model [24,31,37]. However, others have either 75 

only used the multi-scale framework to derive quantities such as the basic reproduction 76 

number of the pathogen rather than predicting temporal epidemic dynamics [30,33], or 77 

have made simplifying assumptions such as taking a within-host model to be in 78 

equilibrium [21,22,27,32]. Although an assumption that the pathogen load in each 79 

infected host is not changing (or changes only a limited number of times) might be 80 

appropriate for chronic infections, it leads to an approximate population-scale model 81 

that does not explicitly account for time-dependent infectiousness or other potentially 82 

complex patient-level dynamics. 83 

 84 

In most previous studies that have used IDEs to transition from within- to between-host, 85 

the progression of infection through all patients has been assumed to be identical [35]. 86 

Patient-level dynamics are therefore characterised by a within-host model in which the 87 

values of model parameters (describing factors such as pathogen replication as well as 88 

immune responses) are the same for all patients. These parameters have either 89 

assumed values that have not been derived rigorously from data [29], or have been 90 

obtained by fitting the model to data collected in longitudinal cohort studies from a small 91 

number of patients [27,33]. Within-host parameters are, in fact, likely to vary between 92 
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individuals [14,39,40], for example due to differences in immune responses [41], while 93 

measurement error may also lead to inaccurate parameter estimates particularly given 94 

limited numbers of observations [35,42]. As we show, if patient-level data are only 95 

available from a limited number of patients, then predictions of population-scale 96 

epidemic dynamics may be inaccurate. 97 

 98 

In this paper, we introduce a novel framework for transitioning from within- to between-99 

host epidemiological dynamics straightforwardly. Our method involves using a 100 

compartmental model with a large number of infected compartments to predict the 101 

population-scale dynamics. Compartmental models, comprising systems of ordinary 102 

differential equations (ODEs), can be solved easily using standard numerical routines 103 

and software packages [4,28,43,44], are straightforward to adapt to include further 104 

biological detail [4,20,28], and are widely used for epidemic modelling [4,45]. We show 105 

rigorously that our modelling framework is equivalent to a more complex IDE approach, 106 

in the large-compartment limit of our method. Since the number of compartments is 107 

simply a choice for the user to make, our easy-to-use method can generate results that 108 

are as accurate as those from more complex approaches. 109 

 110 

To demonstrate our framework, we consider modelling an outbreak due to the influenza 111 

A virus. We use a previously parameterised within-host model [14] to generate a 112 

synthetic dataset representative of real patient data (figure S1), incorporating variability 113 

in the viral load time series between patients due to factors such as differences in 114 

immune responses. Since the magnitude of this variability has been chosen to match 115 
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data from a previous cohort study [14,46], our dataset is comparable to obtaining data 116 

from a cohort study, but with the advantage that we can test our approach using many 117 

different possible cohorts of any size (from small cohort sizes up to very large cohort 118 

sizes that generate idealised data). We explore the effects of both the number of 119 

patients from which data are available, and the extent of measurement error in patient 120 

data, on population-scale predictions. Our work therefore provides insight into the data 121 

required for accurate forecasting using multi-scale epidemic models, as well as an 122 

accessible modelling framework that can be used for forecasting during future 123 

epidemics of a range of infectious diseases. 124 

 125 

2. RESULTS 126 

Transitioning from within- to between-host influenza dynamics 127 

 128 

We have developed a new compartmental framework for transitioning from within- to 129 

between-host epidemic dynamics. In our approach, a within-host model is fitted to data 130 

from individual patients, to estimate the pathogen load of each measured patient at 131 

every time since infection (figure 1a). As with other multi-scale epidemic models 132 

[18,19,35], by assuming a functional relationship between pathogen load and 133 

infectiousness, the expected infectiousness, 𝛽(𝜏), of any host is then estimated at each 134 

time since infection, 𝜏 days (figure 1b). We will call 𝛽(𝜏) the expected infectiousness 135 

curve. In previous approaches, the Kermack and McKendrick (K&M) IDE model [47] 136 

(see Section S1 of the Supplementary Material) has then been used to calculate the 137 

population-scale dynamics (figure 1c). We instead use the expected infectiousness 138 
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curve to parameterise a multi-stage compartmental model with a large number of 139 

infected compartments (figure 1d), which can also be used to predict the population-140 

scale dynamics (figure 1e). For details on the compartmental and IDE approaches, see 141 

Methods. In the limit of infinitely many compartments in our framework, the two 142 

approaches are mathematically equivalent (we prove this rigorously in Section S2). 143 

 144 

 145 

Figure 1. Schematic demonstrating methods for transitioning from patient-level to population-146 

scale epidemiological dynamics. In standard approaches (a-c), measurements from within each patient 147 

(a) are used to parameterise a within-host model, giving rise to an averaged infectiousness curve (b). 148 

These patient-level dynamics can then be nested in an IDE model (e.g. the K&M model [47]) used to 149 

predict the population-scale dynamics (c). However, IDE models are challenging to solve. In contrast, in 150 
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our approach (a,b,d,e) the expected infectiousness curve is instead used to parameterise a 151 

compartmental model (d) that can be used to predict population-scale dynamics straightforwardly (e). 152 

Early-epidemic oscillations in panels (c) and (e) occur because the expected infectiousness of an infected 153 

host is close to zero in the first day of infection, leading to delays before successive generations of newly 154 

infected hosts begin to transmit the pathogen. 155 

 156 

To illustrate our framework in a concrete setting, we considered the specific case of 157 

influenza A infection in humans. We used the target cell-limited (TCL) within-host 158 

model, which has previously been fitted to data from a cohort study of influenza 159 

infection [14], to generate synthetic data from a large number of patients (see Methods). 160 

The data were used to calculate the expected infectiousness curve (figure 2a) under the 161 

assumptions of a linear relationship between viral load and infectiousness 162 

[18,33,35,38,39] and a basic reproduction number (defined to be the expected number 163 

of secondary cases arising from a single infected host in an otherwise entirely 164 

susceptible population [4]) of 1.5 [8] (see Methods), although we consider other 165 

assumptions and values of the reproduction number later (Sections S8 and S9). 166 

 167 

Both our compartmental approach using a large number of infected compartments (n = 168 

1000) and the previously used IDE method (i.e. the K&M model) were then used to 169 

predict the population-scale outbreak dynamics, initially assuming the expected 170 

infectiousness curve was known exactly (figure 2b). We considered a population of size 171 

N = 1000 and assumed a single newly infected individual was introduced into an entirely 172 

susceptible population. The two approaches produced almost identical results – the 173 

error in the predicted population-scale dynamics when the compartmental method was 174 
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used, calculated as a proportional error relative to the dynamics predicted using the IDE 175 

method (see Methods), was only 0.2%. We explored how many compartments are 176 

required in our framework to ensure accurate population-scale forecasts, finding that in 177 

general, the error in predictions scales with 1/n as the number of compartments, n, 178 

becomes large (Section S5). When the infectiousness curve shown in figure 2a was 179 

used to transition to population-scale dynamics, we found that n = 24 compartments are 180 

sufficient for an error in population-scale predictions of 10% or less (figure S2b). 181 

 182 

 183 

Figure 2. Transitioning from within- to between-host influenza dynamics using the compartmental 184 

and IDE methods. (a) The expected infectiousness curve, 𝛽(𝜏), when the patient-level dynamics are 185 

perfectly characterised. (b) The population-scale dynamics, using our compartmental approach with n = 186 

1000 infected compartments (blue), and using the IDE method (black dashed), for the infectiousness 187 

curve shown in panel (a). 188 

 189 
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The effect of limited and inaccurate patient-level data on population-scale 190 

predictions 191 

 192 

We considered the effect of two quantities on population-scale predictions: the number 193 

of patients from which individual patient data are available, and the extent of 194 

measurement error in patient-level data. Initially, we considered these two factors in 195 

isolation, before testing their combined effects. We defined error metrics to quantify the 196 

errors that arose in the patient-level dynamics (the within-host error) and in the 197 

population-scale dynamics (the between-host error), using proportional errors in order to 198 

enable comparison between errors at the two scales (see Methods). 199 

 200 

Number of patients 201 

 202 

In most cohort studies used to inform multi-scale models, data are only available from a 203 

small number of patients [27,33] and within-host parameters may vary significantly 204 

between patients [14,39,40]. To investigate the error in population-scale predictions that 205 

inadequate data may generate, we supposed that data were only available from d 206 

randomly chosen patients (see Methods). To isolate the effect of variability between 207 

hosts rather than measurement error, the exact viral load of each patient was initially 208 

assumed to be known at every time since infection. We used the available data to 209 

estimate the expected infectiousness curve (figure 3a) and calculated the approximate 210 

population-scale dynamics using our compartmental framework with n = 1000 infected 211 

compartments (figure 3b). For a fixed cohort size, d, significantly different predictions of 212 
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population-scale dynamics are possible, depending on which patients are included in 213 

the study (figure 3c). Therefore, we calculated the distributions of errors in both the 214 

patient-level and population-scale dynamics, relative to the case in which the patient-215 

level dynamics were perfectly characterised, over 5000 repeats for each of a range of 216 

patient cohort sizes, d (figure 3d). Equivalent results using the IDE method rather than 217 

our compartmental approach are shown in figure S3a. 218 

 219 

 220 
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Figure 3. How many patients need to supply data for accurate population-scale predictions? (a) 221 

Examples of approximate expected infectiousness curves when (exact and continuous) data are available 222 

from d = 1 (green), d = 10 (blue) or d = 20 (red) randomly chosen patients, and the expected 223 

infectiousness curve when the patient-level dynamics are perfectly characterised (black dotted). (b) The 224 

predicted population-scale dynamics for each infectiousness curve in panel (a), using n = 1000 225 

compartments in our framework. (c) Three examples of possible approximate population-scale dynamics, 226 

when data are available from d = 10 patients. (d) Box-and-whisker plots indicating the distributions of 227 

within-host (black) and between-host (blue) errors for different groups of patients randomly chosen in the 228 

study cohort, for a range of values of the number of patients, d.  The boxes indicate the lower quartile, 229 

median and upper quartile, and the maximum length of each whisker is 1.5 times the interquartile range. 230 

The crosses represent the between-host errors corresponding to the curves of the same colour in panel 231 

(c) (these are at values of 28%, 17% and 5% error). 232 

 233 

As the number of patients is increased, the errors at patient-level and population-scale 234 

both decrease in general (depending on precisely which patients are included in the 235 

study cohort), but at a decreasing rate. The magnitude of the population-scale error is 236 

generally smaller than that of the patient-level error. Therefore, limited data do not 237 

necessarily preclude accurate population-scale predictions, even when there is a large 238 

amount of variability between different patients. In this case – when there are exact and 239 

continuous data available from each patient – a cohort size of d = 20 patients is 240 

sufficient for the between-host error to be 10% or less on average (figure 3d). However, 241 

since the errors are affected by the precise patients included in the cohort, more 242 

patients are required for a greater certainty of a small between-host error. For example, 243 

d = 30 patients are required to ensure that the upper quartile of between-host errors for 244 

cohorts of that size is less than 10%. 245 



13 
 

 246 

Extent of measurement error 247 

 248 

In longitudinal cohort studies, data are only collected from each patient at a limited 249 

number of time points. For studies of influenza infections, data may be collected daily 250 

(for example [14,39]) over the course of infection, which lasts approximately one week 251 

[48]. However, there can be significant measurement error whenever the viral load is 252 

recorded [35,42]. 253 

 254 

We considered viral load values recorded daily for each patient for a week after 255 

infection, although we also considered the effect of more frequent observations (Section 256 

S7). To incorporate measurement error in the synthetic data, a normally distributed error 257 

with standard deviation 𝜎 was applied to the logarithm of each measurement. To 258 

estimate the patient-level dynamics, we fitted the TCL model to the data for each patient 259 

(figure 4a, see Methods for details). 260 

 261 

To demonstrate the effect of measurement error on population-scale predictions, we 262 

assumed that data were available from d = 10 randomly chosen patients, and compared 263 

estimates of the expected infectiousness curve, first under the assumption that the viral 264 

load of each host was known exactly at all times during infection, and second when 265 

there was measurement error in daily recordings of the viral load (figure 4b). Our 266 

compartmental framework with n = 1000 compartments was then used to predict the 267 

population-scale dynamics in both cases (figure 4c). We calculated the within-host and 268 



14 
 

between-host errors that arose directly due to measurement error, by taking the “true” 269 

dynamics to be those when exact and continuous data were available from the same 10 270 

hosts. The distributions of these errors, each time calculated over 5000 repeats for a 271 

range of values of 𝜎, are shown in figure 4d (for equivalent results obtained using the 272 

IDE method, see figure S3b). 273 

 274 

 275 
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Figure 4. The effect on population-scale predictions of measurement error in patient-level data. (a) 276 

Example of synthetic data for a single patient: the true viral load of the patient against time since infection 277 

(blue), daily synthetic data with a measurement noise level of 𝜎 = 1 log10(TCID50/ml) (red crosses), and 278 

the viral load against time when the TCL model is fitted to the data (green). In figure S1, synthetic viral 279 

load data generated using the TCL model are compared to the real data that were used to parameterise 280 

the TCL model [14]. (b) Examples of expected infectiousness curves, without measurement error (blue) 281 

and with measurement error (green), for d = 10 patients. (c) The population-scale dynamics for each 282 

infectiousness curve in (b), using n = 1000 compartments in our framework. (d) Box-and-whisker plots 283 

indicating the distributions of within-host (black) and between-host (blue) errors arising directly due to 284 

measurement error, for a range of values of the extent of measurement error, 𝜎. The red crosses 285 

represent the within-host error corresponding to panel (b) and the between-host error corresponding to 286 

panel (c) (these are at values of 21% and 17% error, respectively). 287 

 288 

The errors at patient-level and at population-scale both increase with the measurement 289 

noise level, 𝜎. For values of 𝜎 of 1 log10(TCID50/ml) or higher, the mean population-scale 290 

error is over 10%. In that case, when a cohort of only d = 10 patients is used, 291 

measurement error alone is likely to prevent accurate population-scale forecasts, even if 292 

there is no additional error contribution due to within-host parameter variability. 293 

 294 

Overall error 295 

 296 

So far, we have described our analyses considering the separate effects of patient 297 

cohort size and measurement noise on the characterisation of within-host viral load time 298 

series, as well as the resulting impact on population-scale outbreak predictions. 299 

However, in reality, both these sources of error would be present simultaneously. Errors 300 
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would also occur if a small number of compartments is used in our multi-scale modelling 301 

approach, although this can be avoided by simply choosing a large number of 302 

compartments in the model. Nonetheless, we also conducted an analysis in which all 303 

three potential sources of error were included: (i) number of patients; (ii) measurement 304 

error; (iii) number of compartments.  305 

 306 

When we investigated the combined effect of these potential sources of error, we 307 

considered a measurement noise level of 𝜎 = 1 log10(TCID50/ml), since this generated 308 

synthetic data comparable to those recorded in cohort studies (figure S1). Assuming 309 

that data were available from d randomly sampled patients, our compartmental 310 

framework with n infected compartments was used to estimate the population-scale 311 

dynamics. We repeated this analysis 10,000 times each for different pairs of values of d 312 

and n, each time calculating the within-host and between-host errors, relative to the 313 

case in which the patient-level dynamics were perfectly characterised and the IDE 314 

method was used (equivalent to using infinitely many compartments in our 315 

compartmental framework). The distributions of within-host and between-host errors, 316 

when a large number of compartments (n = 1000) is used in our framework, are plotted 317 

for different numbers of patients (d) in figure 5a. Equivalent results using the IDE 318 

method are shown in figure S3c. When either the compartmental or IDE approach is 319 

used, data from d = 40 patients are required for an average between-host error of 10% 320 

or below (compared to 20 patients if data are recorded exactly, i.e. with no 321 

measurement error – see figure 3d and figure S3a).  322 

 323 
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 324 

Figure 5. The effects of the number of patients and number of compartments on population-scale 325 

predictions. (a) Box-and-whisker plots indicating the distributions of within-host (black) and between-host 326 

(blue) errors for different patients chosen in the study cohort when n = 1000 compartments are used in 327 

our framework, assuming a measurement noise level of 𝜎 = 1 log10(TCID50/ml), for a range of values of 328 

the number of patients, d. (b) The expected error in the population-scale dynamics, for different values of 329 

the number of compartments, n, and the number of patients, d. The red line indicates where the error is 330 

10%. 331 

 332 

The mean error in the population-scale dynamics, for different numbers of patients (d) 333 

and numbers of compartments (n), is shown in figure 5b. In the case of d = 40 patients, 334 

each sampled once daily, the user should choose at least n = 60 compartments in our 335 

approach to ensure a mean error of 10% or less. As few as 40 compartments are 336 

needed if data are available from a large number (more than 60) of patients. 337 

Nonetheless, since the number of compartments to use is simply a choice for the user – 338 

rather than requiring any more data to be collected – we suggest that any user of our 339 

framework simply chooses a very large number of compartments. We note, however, 340 
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that the benefit of using more compartments becomes negligible when more than n = 341 

100 compartments are included in our approach (figure 5b). 342 

 343 

Whereas in figure 5 we assumed data were collected once daily for a week from each 344 

patient, we also conducted supplementary analyses of the between-host error when 345 

data were instead collected twice per day from each patient (Section S7) – in this case, 346 

data are only required from 20 patients for a mean between-host error of 10% or less 347 

(figure S4b). If instead the total number of measurements that can be taken is fixed, 348 

then it might be necessary to choose between sampling a large number of patients 349 

infrequently, or a small number of patients frequently. We explored this in Section S7, 350 

and found that sampling patients more than twice per day tended to lead to less 351 

accurate population-scale predictions when the total number of measurements was 352 

fixed at values below 1000 (figure S5). For realistic cohort sizes, population-scale errors 353 

were similar when data were collected either once daily from 2d patients or twice daily 354 

from d patients (for example, when d = 20, the respective errors are both 10%). 355 

 356 

We examined the robustness of our results to our assumptions when transitioning from 357 

within- to between-host (Section S8), finding similar results to those shown in figure 5 in 358 

two alternative cases, in which the infectiousness of each patient either scales with the 359 

logarithm of their viral load (figure S6c) or saturates at high viral loads (figure S6f). In 360 

addition, we considered the effect of the assumed value of the basic reproduction 361 

number, R0, on our results (Section S9), and also repeated our analyses in figure 5 for 362 

different values of the measurement noise level, 𝜎 (Section S10), and for different levels 363 
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of variability in the within-host parameter values corresponding to different patients 364 

(Section S11). When R0, 𝜎, or the level of variability in within-host parameter values, 365 

exceeded the values considered in figure 5, a cohort size larger than 40 hosts was 366 

found to be required to ensure a mean between-host error of 10% or below (figures S7-367 

S9) – for example, data from 70 patients are required if R0 = 3 (figure S7i). 368 

 369 

3. DISCUSSION 370 

In this article, we have introduced a novel, easy-to-use, compartmental framework for 371 

nesting patient-level data in population-scale epidemic models. In the large-372 

compartment limit, our method is mathematically equivalent to more complicated 373 

approaches that involve IDEs (Section S2). However, our method has the advantage 374 

that it can be used straightforwardly, allowing it to be applied widely in future. We have 375 

provided adaptable computing code alongside this article to facilitate future use of our 376 

approach (see Data Accessibility). 377 

 378 

To illustrate our method, we considered the example of influenza A infection in humans. 379 

A viral dynamics model [14] was used to generate a synthetic dataset describing 380 

changing viral loads in a cohort of patients, which is representative of real patient data 381 

(figure S1). We showed how our compartmental framework can be used to predict the 382 

population-scale epidemic dynamics, and compared our predictions to forecasts using 383 

the more complicated K&M IDE model. The population-scale predictions from our 384 

framework closely matched those obtained using the IDE model, provided that a 385 
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sufficient number of compartments was employed in our approach (figure 2b and figure 386 

S2). 387 

 388 

The amount of data used in modelling studies of within-host influenza dynamics has 389 

varied widely, with some studies using data from fewer than 10 patients [14] but others 390 

more than 40 patients [39]. While multi-scale models have often been parameterised 391 

using either no or limited data [29], drawing robust population-scale conclusions from 392 

cohort studies involving a small number of patients is likely to be challenging, since 393 

patient-level dynamics display significant variability between different individuals 394 

[14,39,40]. We therefore assessed the errors that arise in predicted population-scale 395 

dynamics as a result of limited patient data, as well as considering measurement errors 396 

that can beset parameter inference from patient-level data [42]. We first investigated 397 

these effects separately (figures 3 and 4), before considering both these effects in a 398 

single combined analysis (figure 5). When patient data were collected once daily, we 399 

found that data from at least 40 patients were required for a mean population-scale 400 

error of 10% or smaller when either our compartmental approach or the IDE method 401 

was used (figure 5a and figure S3c). However, since the precise value of the 402 

population-scale error depended on the exact subset of patients that was included in the 403 

study, the error could be either larger or smaller than 10% even when data were 404 

available from 40 patients (figure 5a). As a result, larger numbers of patients can 405 

increase the confidence that the error is below a pre-specified threshold value (figure 406 

5a). We considered daily measurements of pathogen load, since this frequency of data 407 

acquisition is common to a number of previous longitudinal studies of influenza 408 
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infections (e.g. [14,39]). However, the accuracy of population-scale predictions depends 409 

on the frequency with which data are collected (Section S7), so ensuring regular data 410 

collection from each patient in future cohort studies is important for accurate population-411 

scale forecasting. 412 

 413 

Our approach was motivated by earlier studies in which compartmental models with 414 

multiple latent and infectious stages were employed so that the standard assumption of 415 

exponentially distributed latent and infectious periods was relaxed [49–53]. The use of 416 

multiple stages allows for gamma distributed latent and infectious periods (the so-called 417 

“linear chain trick” [52] or “method of stages” [53]), and gamma distributions have been 418 

shown to characterise epidemiological periods accurately [49,51]. However, in those 419 

studies [49–53], the level of infectiousness is assumed constant throughout the 420 

infectious period. We were therefore also inspired by previous research in which time-421 

dependent infectiousness was incorporated into multi-stage compartmental models, in 422 

cases where the compartments correspond to clearly distinct phases of infection (for 423 

example, studies of HIV [54] and Ebola [20]) or convenient time periods [55]. Our 424 

approach is more similar to a method used to include experimental data in models of 425 

plant disease [28], but differs from previous literature [20,28,54,55] due to our use of a 426 

large number of infected compartments corresponding to different infection rates in 427 

order to provide an easy method to transition from within- to between-host that is 428 

accurate for any patient-level infection dynamics. 429 

 430 
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We focussed on the case study of influenza A in humans because compartmental 431 

models are frequently used to model both patient-level and population-scale influenza 432 

dynamics, while there has also been significant interest in developing models linking the 433 

dynamics at the two scales [35]. In principle, however, our approach could be extended 434 

to model outbreaks of a range of other pathogens for which patient-level dynamics are 435 

well characterised. This would require careful consideration of the functional relationship 436 

between pathogen load and infectiousness, since this is likely to differ between 437 

pathogens [18]. In particular, the mode of transmission may be an important factor in 438 

determining suitable relationships for different pathogens. 439 

 440 

To describe individual patient-level influenza dynamics, we used the simple TCL within-441 

host model. More detailed within-host models exist, and involve features including a 442 

delay before target cells begin to shed virus (an eclipse phase) [14] or explicit modelling 443 

of innate and adaptive immune responses [56]. While the TCL model was sufficient to 444 

demonstrate our approach here, the expected infectiousness curve in our framework 445 

could be generated using a within-host model with any level of complexity. Alternatively, 446 

if patient-level infection dynamics are not well characterised, then an expected 447 

infectiousness curve that is estimated from transmission data [12,57], rather than within-448 

host data, could also be embedded within our framework. 449 

 450 

In order to generate synthetic patient-level data, we assumed that two within-host 451 

parameters varied between patients, using previous parameter estimates to determine 452 

the level of parameter variability [14]. We incorporated measurement error by adding a 453 
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normally distributed random variate to daily observations of the logarithm of the viral 454 

load (although we also considered other frequencies of data collection in Section S7). 455 

Differences in both the extent of measurement error, and the extent of parameter 456 

variability between patients, can lead to significant differences in population-scale errors 457 

(figures S8 and S9). Therefore, when our modelling framework is used to determine 458 

how many patients should be included in future cohort studies, careful consideration of 459 

the measurement error and the variability in pathogen load time series between patients 460 

is important. 461 

 462 

The TCL model was fitted to the data from each patient using a basic least squares 463 

estimation approach, since the precise method of parameter inference is not central to 464 

our modelling framework. However, it would be straightforward to extend our approach 465 

to consider different error structures and methods for fitting models to patient-level data. 466 

In particular, a non-linear mixed effects modelling approach – amounting to a partial 467 

pooling of the data between individuals – could be used. This would enable robust 468 

parameter estimation in a real dataset, particularly in settings in which the numbers of 469 

data points per patient are small, and both the frequency and timing of data collection 470 

may vary between patients [58,59]. Going forward, we will use such a method to explore 471 

further whether or not there is an optimal balance between the number of patients and 472 

the frequency of measurements per patient, if total resources are limited (see Section 473 

S7). 474 

 475 
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In our main analyses, we made the common assumption that the infectiousness of an 476 

influenza-infected host is proportional to their viral load [18,33,35,38,39], although we 477 

also obtained similar results in two alternative cases in which infectiousness either 478 

scales with the logarithm of the viral load [33,38] or saturates at high pathogen loads 479 

[21,55] (Section S8). However, more complex possibilities could easily be incorporated 480 

into our framework. For example, future studies may also incorporate varying symptoms 481 

during infection into our approach [20,23,39], in order to account for dependency of 482 

transmissibility on behavioural factors in addition to pathogen load [18]. 483 

 484 

While we considered errors in population-scale predictions arising due to variability 485 

between different infected patients when data are limited, our results were obtained 486 

using a population-scale model in which the population was assumed to be 487 

homogeneous and well-mixed. Variability between different patients was assumed to be 488 

random, so that all infected hosts could effectively be assumed to follow the same 489 

averaged infectiousness curve. In Section S3, we provide mathematical justification for 490 

this averaging in the population-scale dynamics (see also [60]). We sought to develop 491 

our framework for transitioning from within- to between-host using the simplest possible 492 

population-scale model, but our compartmental approach could be generalised, for 493 

example, to models incorporating age structure, spatial effects, social contact networks 494 

or stochasticity [4]. In an age-structured model, different within-host parameter values 495 

(or even different models) could be used to describe patient-level dynamics in the 496 

different age groups, since there may be substantial differences in within-host dynamics 497 

between patients of different ages [61]. 498 
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 499 

In summary, we have introduced a novel compartmental framework for nesting patient 500 

data in population-scale epidemiological models. We have demonstrated our easy-to-501 

use approach in the context of influenza. Not only can our modelling approach be used 502 

to inform population-scale predictions with data from patients, but it can also be used to 503 

design cohort studies by determining which data need to be collected. As a result, clear 504 

communication between clinical epidemiologists who conduct cohort studies and 505 

epidemiological modellers will allow for optimal study design. Including patient-level 506 

dynamics in population-scale epidemiological models as proposed here has the 507 

potential to improve epidemic forecasts; we hope that the simplicity of our approach will 508 

facilitate its use for forecasting in a wide range of future outbreaks. 509 

 510 

4. METHODS 511 

Within-host model 512 

 513 

The TCL model of viral dynamics, which has previously been used to model influenza 514 

infections [14,15,62], is given by 515 

𝑑𝑇
𝑑𝜏 = −𝛽𝑇𝑉, 
𝑑𝐼
𝑑𝜏 = 𝛽𝑇𝑉 − 𝛿𝐼, 
𝑑𝑉
𝑑𝜏

= 𝑝𝐼 − 𝑐𝑉, (4.1) 

where T(𝜏) is the number of susceptible target cells, I(𝜏) is the number of infected target 516 

cells, V(𝜏) TCID50/ml is the quantity of free virus, and 𝜏 days is the time since infection. 517 
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The model has previously been parametrised [14] for influenza A infection in humans 518 

(Table 1). 519 

 520 

Table 1. Estimated parameter values and initial conditions for the TCL within-host model [14]. 521 

Parameter Definition Value 
𝛽 Infection rate of 

susceptible cells by virus 
2.7 × 10−5 (TCID50/ml)−1 

day−1 
𝛿 Death rate of infected cells 4.0 day−1 
p Viral shedding rate by 

infected cells 
1.2 × 10−2 (TCID50/ml) 

day−1 
c Clearance rate of free virus 3.0 day−1 

T(0) Initial number of 
susceptible cells 

4 × 108 

I(0) Initial number of infected 
cells 

0 

V(0) Initial quantity of free virus 9.3 × 10−2 TCID50/ml 
 522 

We used the TCL model to generate synthetic data from different patients. To 523 

incorporate variability between patients, we assumed that the parameters 𝛿 and V(0) in 524 

the TCL model vary between individuals. This represents variation in the strength of the 525 

immune response and in the initial viral load. For each patient, log10(𝛿) was sampled 526 

from a normal distribution with mean 0.60 log10(day−1) and standard deviation 0.25 527 

log10(day−1), and log10(V(0)) was sampled from a normal distribution with mean −1.03 528 

log10(TCID50/ml) and standard deviation 1.12 log10(TCID50/ml). These values were 529 

chosen to match variability in previous individual parameter estimates [14], while the 530 

lognormal distribution was used to guarantee positivity. All other parameters were fixed 531 

at the values given in Table 1. 532 

 533 
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We considered analyses in which viral load was assumed to be observed exactly and 534 

continuously throughout infection, as well as analyses in which measurements of the 535 

viral load were recorded once daily for one week after infection. In the latter case, we 536 

incorporated measurement error by applying a normally distributed random variate with 537 

standard deviation 𝜎 to the logarithm of each measurement. We fitted the TCL model to 538 

the daily data from each patient using least squares estimation – in particular, the 539 

values of the parameters 𝛿 and V(0) were chosen to minimise the sum of squares 540 

distance between the logarithm of the viral load in the model and in the data, while all 541 

other parameter values were assumed to be known exactly and were fixed at the values 542 

in Table 1. To avoid unrealistically large estimates of the initial viral load, we imposed 543 

V(0) ≤ 103 TCID50/ml when we fitted the parameters. An example of synthetic data 544 

generated for a single host, in addition to the fitted TCL model, is given in figure 4a. 545 

 546 

The SInR model 547 

 548 

The population-scale SInR model [28,63] of pathogen transmission in a population of N 549 

hosts is given by 550 

𝑑𝑆
𝑑𝑡 = −𝑆5𝛽!𝐼!

"

!#$

,	

𝑑𝐼$
𝑑𝑡 = 𝑆5𝛽!𝐼! − 𝜇$𝐼$,

"

!#$

	

𝑑𝐼%
𝑑𝑡 = 𝜇%&$𝐼%&$ − 𝜇%𝐼% , 𝑓𝑜𝑟	𝑖 = 2,… , 𝑛,	
𝑑𝑅
𝑑𝑡

= 𝜇"𝐼", (4.2) 
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where S(t) is the number of susceptible individuals, Ii(t) is the number of individuals in 551 

the ith infected compartment, and t days is the time since the start of the outbreak. 552 

Individuals in the ith infected compartment infect susceptible hosts at total rate 𝛽iIiS per 553 

day, and progress to the next infected compartment (or recover, if i = n) at total rate 𝜇iIi 554 

per day. The basic reproduction number of this model is [63] 555 

𝑅' = 𝑁5
𝛽%
𝜇%

"

%#$

. (4.3) 556 

 557 

From within- to between-host 558 

 559 

We used both an existing IDE approach (steps A-C below) and a new compartmental 560 

framework (steps A-B and D-E below) to transition from patient-level to population-scale 561 

dynamics. The two methods are outlined below, and a schematic is shown in figure 1. 562 

 563 

A. Fit a within-host model to longitudinally sampled data on patient-level dynamics, 564 

to estimate the pathogen load of each individual patient at every time since 565 

infection. 566 

B. Estimate the expected infectiousness curve, 𝛽(𝜏), at each time since infection, 𝜏 567 

days, by assuming that the infectiousness of each host depends on the pathogen 568 

load according to a pre-specified relationship between these quantities. 569 

Then either C: 570 

C. Solve the K&M IDE model, with infectiousness curve 𝛽(𝜏), to calculate the 571 

population-scale dynamics (details of the K&M model are given in Section S1). 572 
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Or D-E: 573 

D. Parameterise the SInR model: choose the number of infected compartments, n, 574 

where n is assumed to be large. Then find T such that 𝛽(𝜏) is zero or very small 575 

for 𝜏 > T days, and choose the parameters in the SInR model to be 576 

𝜇% =
𝑛
𝑇 ,	577 

𝛽% =
𝑛
𝑇B 𝛽(𝜏)𝑑𝜏

%( "⁄

(%&$)( "⁄
, for	𝑖 = 1,… , 𝑛 − 1,	578 

𝛽" =
𝑛
𝑇
B 𝛽(𝜏)𝑑𝜏.
,

("&$)( "⁄
(4.4) 579 

Explanation of these parameter choices is given in Section S2. 580 

E. Solve the SInR model numerically to approximate the population-scale dynamics. 581 

 582 

In most of our analyses, we assumed a linear relationship between the viral load and 583 

infectiousness of each influenza-infected host, although two alternative possibilities are 584 

considered in Section S8. In particular, in our main analyses we assumed that 585 

𝛽(%)(𝜏) = 𝑘𝑉(%)(𝜏), (4.5) 586 

for constant k, where i represents the particular host under consideration. Therefore, the 587 

expected infectiousness, 𝛽(𝜏), was given in terms of the expected viral load, V(𝜏), of a 588 

host at time 𝜏 days since infection (calculated over a large number of realisations of the 589 

within-host model), by 590 

𝛽(𝜏) = 𝑘𝑉(𝜏). (4.6) 591 

We fixed the constant k by assuming that the basic reproduction number, 592 

𝑅' = 𝑁B 𝛽(𝜏)
,

'
𝑑𝜏, (4.7) 593 
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was known. In our main analyses, we fixed R0 = 1.5, which is consistent with estimates 594 

for influenza A infection [8] (different values of R0 are considered in Section S9). The 595 

expected infectiousness could therefore be calculated using the formula 596 

𝛽(𝜏) =
𝑅'

𝑁 ∫ 𝑉(𝑥)𝑑𝑥,
'

𝑉(𝜏). (4.8) 597 

 598 

To calculate the “true” expected infectiousness curve, 𝛽(𝜏), we computed the expected 599 

viral load over 10,000 realisations of the within-host model. We also considered 600 

analyses in which data were only available from a smaller number of patients, d. In such 601 

cases, we simulated the within-host model d times to calculate the exact patient-level 602 

dynamics corresponding to each patient, and used the data to estimate first V(𝜏) and 603 

then 𝛽(𝜏). In analyses where we also incorporated measurement error, we used the 604 

patient-level dynamics estimated by fitting the within-host model to daily observations of 605 

the viral load for each patient, in order to estimate 𝛽(𝜏). 606 

 607 

Both the compartmental and IDE methods were then used to predict the population-608 

scale dynamics. To parameterise the SInR model, we took T = 7 days, since the 609 

expected infectiousness was found to be very small after a week since infection. We 610 

considered a population of size N = 1000, and assumed that there was initially a single 611 

newly infected individual, with all others susceptible. These initial conditions were 612 

implemented in the SInR model by taking I1(0) = 1 and S(0) = 999, with all other 613 

compartments containing zero hosts initially. 614 

 615 

Errors at patient-level and population-scale 616 
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 617 

We defined error metrics in order to quantify the errors that arise in the patient-level 618 

dynamics and in the population-scale dynamics. These were defined as proportional 619 

errors, so as to enable comparison between errors at the different scales. 620 

 621 

First, we defined the within-host error, Ewh, to be the difference between the exact and 622 

approximate infectiousness curves, integrated over the entire course of infection, as a 623 

proportion of the area of the exact infectiousness curve. Therefore, 624 

𝐸-. =
∫ N𝛽approx(𝜏) − 𝛽exact(𝜏)N𝑑𝜏
,
'

∫ 𝛽exact(𝜏)𝑑𝜏
,
'

, (4.9) 625 

where 𝛽exact(𝜏) and 𝛽approx(𝜏) are the exact and approximate infectiousness curves, 626 

respectively. 627 

 628 

Similarly, if Sexact(t) and Sapprox(t) are the exact and approximate numbers of susceptible 629 

individuals at time t days since the start of the epidemic, then we defined the between-630 

host error, Ebh, in terms of the rate of new cases per day throughout the epidemic, i.e. 631 

𝐸7. =
∫ N�̇�approx(𝑡) − �̇�exact(𝑡)N𝑑𝑡
,
'

∫ −�̇�exact(𝑡)𝑑𝑡
,
'

, (4.10) 632 

where the dot denotes differentiation with respect to time. 633 
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