1,355 research outputs found
Raman imaging and electronic properties of graphene
Graphite is a well-studied material with known electronic and optical
properties. Graphene, on the other hand, which is just one layer of carbon
atoms arranged in a hexagonal lattice, has been studied theoretically for quite
some time but has only recently become accessible for experiments. Here we
demonstrate how single- and multi-layer graphene can be unambiguously
identified using Raman scattering. Furthermore, we use a scanning Raman set-up
to image few-layer graphene flakes of various heights. In transport experiments
we measure weak localization and conductance fluctuations in a graphene flake
of about 7 monolayer thickness. We obtain a phase-coherence length of about 2
m at a temperature of 2 K. Furthermore we investigate the conductivity
through single-layer graphene flakes and the tuning of electron and hole
densities via a back gate
An amphitropic cAMP-binding protein in yeast mitochondria
ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)
Increased Sensitivity to Possible Muonium to Antimuonium Conversion
A new experimental search for muonium-antimuonium conversion was conducted at
the Paul Scherrer Institute, Villigen, Switzerland. The preliminary analysis
yielded one event fulfilling all required criteria at an expected background of
1.7(2) events due to accidental coincidences. An upper limit for the conversion
probability in 0.1 T magnetic field is extracted as (90%
CL).Comment: 2 figure
Negative length orbits in normal-superconductor billiard systems
The Path-Length Spectra of mesoscopic systems including diffractive
scatterers and connected to superconductor is studied theoretically. We show
that the spectra differs fundamentally from that of normal systems due to the
presence of Andreev reflection. It is shown that negative path-lengths should
arise in the spectra as opposed to normal system. To highlight this effect we
carried out both quantum mechanical and semiclassical calculations for the
simplest possible diffractive scatterer. The most pronounced peaks in the
Path-Length Spectra of the reflection amplitude are identified by the routes
that the electron and/or hole travels.Comment: 4 pages, 4 figures include
Three mechanisms of hydrogen-induced dislocation pinning in tungsten
The high-flux deuterium plasma impinging on a divertor degrades the long-termthermo-mechanical performance of its tungsten plasma-facing components. A prime actor inthis is hydrogen embrittlement, a degradation phenomenon that involves the interactions between hydrogen and dislocations, the primary carriers of plasticity. Measuring such nanoscaleinteractions is still very challenging, which limits our understanding. Here, we demonstrate anexperimental approach that combines thermal desorption spectroscopy (TDS) andnanoindentation, allowing to investigate the effect of hydrogen on the dislocation mobility in tungsten. Dislocation mobility was found to be reduced after deuterium injection, which ismanifested as a ‘pop-in’ in the indentation stress-strain curve, with an average activation stressfor dislocation mobility that was more than doubled. All experimental results can be confidentlyexplained, in conjunction with experimental and numerical literature findings, by the simultaneous activation of three mechanisms responsible for dislocation pinning: (i) hydrogentrapping at pre-existing dislocations, (ii) hydrogen-induced vacancies, and (iii) stabilization ofvacancies by hydrogen, contributing respectively 38%, 52%, and 34% to the extra activationstress. These mechanisms are considered to be essential for the proper understanding and modeling of hydrogen embrittlement in tungsten
CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells
Glioblastoma (GBM) is one of the most aggressive types of cancer with limited
therapeutic options and unfavorable prognosis. Stemness and non-classical
epithelial-to-mesenchymal transition (ncEMT) features underlie the switch from
normal to neoplastic states as well as resistance of tumor clones to current
therapies. Therefore, identification of ligand/receptor systems maintaining
this privileged state is needed to devise efficient cancer therapies. In this
study, we show that the expression of CD95 associates with stemness and EMT
features in GBM tumors and cells and serves as a prognostic biomarker. CD95
expression increases in tumors and with tumor relapse as compared with non-
tumor tissue. Recruitment of the activating PI3K subunit, p85, to CD95 death
domain is required for maintenance of EMT-related transcripts. A combination
of the current GBM therapy, temozolomide, with a CD95 inhibitor dramatically
abrogates tumor sphere formation. This study molecularly dissects the role of
CD95 in GBM cells and contributes the rational for CD95 inhibition as a GBM
therapy
Precise Measurement of the Pi+ -> Pi0 e+ nu Branching Ratio
Using a large acceptance calorimeter and a stopped pion beam we have made a
precise measurement of the rare Pi+ -> Pi0 e+ Nu,(pi_beta) decay branching
ratio. We have evaluated the branching ratio by normalizing the number of
observed pi_beta decays to the number of observed Pi+ -> e+ Nu, (pi_{e2})
decays. We find the value of Gamma(Pi+ -> Pi0 e+ Nu)/Gamma(total) = [1.036 +/-
0.004(stat.) +/- 0.004(syst.) +/- 0.003(pi_{e2})] x 10^{-8}$, where the first
uncertainty is statistical, the second systematic, and the third is the pi_{e2}
branching ratio uncertainty. Our result agrees well with the Standard Model
prediction.Comment: 4 pages, 5 figures, 1 table, revtex4; changed content; updated
analysi
- …