1,343 research outputs found

    Lipid-protein interaction in the phosphatidylcholine exchange protein.

    Full text link

    Raman imaging and electronic properties of graphene

    Full text link
    Graphite is a well-studied material with known electronic and optical properties. Graphene, on the other hand, which is just one layer of carbon atoms arranged in a hexagonal lattice, has been studied theoretically for quite some time but has only recently become accessible for experiments. Here we demonstrate how single- and multi-layer graphene can be unambiguously identified using Raman scattering. Furthermore, we use a scanning Raman set-up to image few-layer graphene flakes of various heights. In transport experiments we measure weak localization and conductance fluctuations in a graphene flake of about 7 monolayer thickness. We obtain a phase-coherence length of about 2 Ό\mum at a temperature of 2 K. Furthermore we investigate the conductivity through single-layer graphene flakes and the tuning of electron and hole densities via a back gate

    An amphitropic cAMP-binding protein in yeast mitochondria

    Get PDF
    ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)

    Increased Sensitivity to Possible Muonium to Antimuonium Conversion

    Get PDF
    A new experimental search for muonium-antimuonium conversion was conducted at the Paul Scherrer Institute, Villigen, Switzerland. The preliminary analysis yielded one event fulfilling all required criteria at an expected background of 1.7(2) events due to accidental coincidences. An upper limit for the conversion probability in 0.1 T magnetic field is extracted as 8⋅10−118 \cdot 10^{-11} (90% CL).Comment: 2 figure

    Negative length orbits in normal-superconductor billiard systems

    Get PDF
    The Path-Length Spectra of mesoscopic systems including diffractive scatterers and connected to superconductor is studied theoretically. We show that the spectra differs fundamentally from that of normal systems due to the presence of Andreev reflection. It is shown that negative path-lengths should arise in the spectra as opposed to normal system. To highlight this effect we carried out both quantum mechanical and semiclassical calculations for the simplest possible diffractive scatterer. The most pronounced peaks in the Path-Length Spectra of the reflection amplitude are identified by the routes that the electron and/or hole travels.Comment: 4 pages, 4 figures include

    Three mechanisms of hydrogen-induced dislocation pinning in tungsten

    Get PDF
    The high-flux deuterium plasma impinging on a divertor degrades the long-termthermo-mechanical performance of its tungsten plasma-facing components. A prime actor inthis is hydrogen embrittlement, a degradation phenomenon that involves the interactions between hydrogen and dislocations, the primary carriers of plasticity. Measuring such nanoscaleinteractions is still very challenging, which limits our understanding. Here, we demonstrate anexperimental approach that combines thermal desorption spectroscopy (TDS) andnanoindentation, allowing to investigate the effect of hydrogen on the dislocation mobility in tungsten. Dislocation mobility was found to be reduced after deuterium injection, which ismanifested as a ‘pop-in’ in the indentation stress-strain curve, with an average activation stressfor dislocation mobility that was more than doubled. All experimental results can be confidentlyexplained, in conjunction with experimental and numerical literature findings, by the simultaneous activation of three mechanisms responsible for dislocation pinning: (i) hydrogentrapping at pre-existing dislocations, (ii) hydrogen-induced vacancies, and (iii) stabilization ofvacancies by hydrogen, contributing respectively 38%, 52%, and 34% to the extra activationstress. These mechanisms are considered to be essential for the proper understanding and modeling of hydrogen embrittlement in tungsten

    CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells

    Get PDF
    Glioblastoma (GBM) is one of the most aggressive types of cancer with limited therapeutic options and unfavorable prognosis. Stemness and non-classical epithelial-to-mesenchymal transition (ncEMT) features underlie the switch from normal to neoplastic states as well as resistance of tumor clones to current therapies. Therefore, identification of ligand/receptor systems maintaining this privileged state is needed to devise efficient cancer therapies. In this study, we show that the expression of CD95 associates with stemness and EMT features in GBM tumors and cells and serves as a prognostic biomarker. CD95 expression increases in tumors and with tumor relapse as compared with non- tumor tissue. Recruitment of the activating PI3K subunit, p85, to CD95 death domain is required for maintenance of EMT-related transcripts. A combination of the current GBM therapy, temozolomide, with a CD95 inhibitor dramatically abrogates tumor sphere formation. This study molecularly dissects the role of CD95 in GBM cells and contributes the rational for CD95 inhibition as a GBM therapy

    Precise Measurement of the Pi+ -> Pi0 e+ nu Branching Ratio

    Full text link
    Using a large acceptance calorimeter and a stopped pion beam we have made a precise measurement of the rare Pi+ -> Pi0 e+ Nu,(pi_beta) decay branching ratio. We have evaluated the branching ratio by normalizing the number of observed pi_beta decays to the number of observed Pi+ -> e+ Nu, (pi_{e2}) decays. We find the value of Gamma(Pi+ -> Pi0 e+ Nu)/Gamma(total) = [1.036 +/- 0.004(stat.) +/- 0.004(syst.) +/- 0.003(pi_{e2})] x 10^{-8}$, where the first uncertainty is statistical, the second systematic, and the third is the pi_{e2} branching ratio uncertainty. Our result agrees well with the Standard Model prediction.Comment: 4 pages, 5 figures, 1 table, revtex4; changed content; updated analysi
    • 

    corecore