997 research outputs found

    Neutrino Decay as an Explanation of Atmospheric Neutrino Observations

    Get PDF
    We show that the observed zenith angle dependence of the atmospheric neutrinos can be accounted for by neutrino decay. Furthermore, it is possible to account for all neutrino anomalies with just three flavors.Comment: 4 pages, 1 figur

    Neutrino Lasing in the Sun

    Get PDF
    Applying the phenomenon of neutrino lasing in the solar interior, we show how the rate for the generic neutrino decay process `\nu -> fermion + boson', can in principal be enhanced by many orders of magnitude over its normal decay rate. Such a large enhancement could be of import to neutrino-decay models invoked in response to the apparent deficit of electron neutrinos observed from the sun. The significance of this result to such models depends on the specific form of the neutrino decay, and the particle model within which it is embedded.Comment: 12 pages, using ordinary TeX. No figure

    MSW mediated neutrino decay and the solar neutrino problem

    Get PDF
    We investigate the solar neutrino problem assuming simultaneous presence of MSW transitions in the sun and neutrino decay on the way from sun to earth. We do a global χ2\chi^2-analysis of the data on total rates in Cl, Ga and Superkamiokande (SK) experiments and the SK day-night spectrum data and determine the changes in the allowed region in the \dm - \tan^2\theta plane in presence of decay. We also discuss the implications for unstable neutrinos in the SNO experiment.Comment: Final version to appear in Phys. Rev.

    The populations of planetary nebulae in the direction of the Galactic bulge

    Full text link
    We have observed 44 planetary nebulae (PNe) in the direction of the Galactic bulge, and merged our data with published ones. We have distinguished, in the merged sample of 164 PNe, those PNe most likely to prtain physically to the Galactic bulge and those most likely to belong to the Galactic disk. We have determined the chemical composition of all the 164 objects in a coherent way. We looked for stellar emission features and discovered 14 new [WR] stars and 15 new weak emission line central stars. The analyzed data led us to the following conclusions: (1) The spectral type distribution of [WR] stars is very different in the bulge and in the disk of the Galaxy. However, the observed distributions are strongly dependent on selection effects. (2) The proportion of [WR] PNe is significantly larger in the bulge than in the disk. (3) The oxygen abundances in [WR] stars do no appear to be significantly affected by nucleosynthesis and mixing in the progenitors. (4) The O/H gradient of the Galactic disk PNe population flattens in the most internal parts of the Galaxy. (5) The median oxygen abundance in the bulge PN population is larger by 0.2 dex than in the disk population seen in the direction of the bulge. (6) Bulge PNe with smaller O/H tend to have smaller radial velocities. (7) The oxygen abundance distribution of bulge PNe is similar in shape to that of the metallicity distribution of bulge giants, but significantly narrower. (8) The location of SB 32 (PN G 349.7-09.1) in the (V_lsr, l_II) diagram and its low oxygen abundance argues that it probably belongs to the halo population.Comment: 14 pages, 16 figures. Accepted for publication in A&

    New Constraints on Neutrino Oscillations in Vacuum as a Possible Solution of the Solar Neutrino Problem

    Full text link
    Two-neutrino oscillations in vacuum are studied as a possible solution of the solar neutrino problem. New constraints on the parameter sn2, characterizing the mixing of the electron neutrino with another active or sterile neutrino, as well as on the mass--squared difference, dm2, of their massive neutrino components, are derived using the latest results from the four solar neutrino experiments. Oscillations into a sterile neutrino are ruled out at 99 % C.L. by the observed mean event rates even if one includes the uncertainties of the standard solar model predictions in the analysis.Comment: 10 pages + 3 figures attached as postscript files, IFP-480-UNC and Ref. SISSA 177/93/EP (Updated Version which takes into account the latest GALLEX results from 30 runs

    Comparing and contrasting the νμντ\nu_{\mu} \to \nu_{\tau} and νμνs\nu_{\mu} \to \nu_s solutions to the atmospheric neutrino problem with SuperKamiokande data

    Full text link
    The νμντ\nu_{\mu} \to \nu_{\tau} and νμνs\nu_{\mu} \to \nu_s solutions to the atmospheric neutrino problem are compared with SuperKamiokande data. The differences between these solutions due to matter effects in the Earth are calculated for the ratio of μ\mu-like to ee-like events and for up-down flux asymmetries. These quantities are chosen because they are relatively insensitive to theoretical uncertainties in the overall neutrino flux normalisation and detection cross-sections and efficiencies. A χ2\chi^2 analysis using these quantities is performed yielding 3σ3\sigma ranges which are approximately given by (0.7251.0,4×1042×102eV2)(0.725 - 1.0, 4 \times 10^{-4} - 2 \times 10^{-2} eV^2) and (0.741.0,1×1032×102eV2)(0.74 - 1.0, 1 \times 10^{-3} - 2 \times 10^{-2} eV^2) for (sin22θ,Δm2)(\sin^2 2\theta,\Delta m^2) for the νμντ\nu_{\mu} \to \nu_{\tau} and νμνs\nu_{\mu} \to \nu_s solutions, respectively. Values of Δm2\Delta m^2 smaller than about 2×1032 \times 10^{-3} eV2^2 are disfavoured for the νμνs\nu_{\mu} \to \nu_s solution, suggesting that future long baseline experiments should see a positive signal if this scenario is the correct one.Comment: revtex, 22 pages, 12 figure

    Right-handed-neutrino Majorana mass at the SUSY GUT scale and the solution of the solar-neutrino problem

    Full text link
    In the SUSY GUT scenario, it is natural to assume the right-handed-neutrino Majorana-mass scale to be 101610^{16} GeV. This will in principle lead, by the seesaw mechanism, to a ντ \nu_{\tau} mass of order mt2/(1016GeV)3×103eV m_t^2 / (10^{16}\, {\rm GeV}) \sim 3 \times 10^{-3}\, {\rm eV} . This suggests that the solution of the solar-neutrino puzzle should be either the MSW effect in νe\nu_e--ντ\nu_{\tau} oscillations, with mντ2105eV2 m_{\nu_{\tau}}^2 \sim 10^{-5}\, {\rm eV}^2 , or long-wavelength νe\nu_e--νμ\nu_{\mu} oscillations, with mνμ21010eV2 m_{\nu_{\mu}}^2 \sim 10^{-10}\, {\rm eV}^2 . These solutions require unexpectedly large mixings of νe \nu_e with ντ \nu_{\tau} and νμ \nu_{\mu} , respectively. I suggest a variation of the Dimopoulos--Hall--Raby model for the fermion mass matrices which can accomodate such large mixings.Comment: 10 pages, standard LATEX, no figures, Carnegie-Mellon University Report CMU-HEP93-27 and DOE-ER/40682-5
    corecore