4,762 research outputs found

    Limits on Lorentz violation in neutral-Kaon decay

    Get PDF
    The KLOE collaboration recently reported bounds on the directional dependence of the lifetime of the short-lived neutral kaon K_S with respect to the cosmic microwave background dipole anisotropy. We interpret their results in a general framework developed to probe Lorentz violation in the weak interaction. In this approach a Lorentz-violating tensor \chi_{\mu\nu} is added to the standard propagator of the W boson. We derive the K_S decay rate in a naive tree-level model and calculate the asymmetry for the lifetime. By using the KLOE data the real vector part of \chi_{\mu\nu} is found to be smaller than 10^-2. We briefly discuss the theoretical challenges concerning nonleptonic decays.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013

    Symmetry violations in nuclear and neutron β\beta decay

    Get PDF
    The role of β\beta decay as a low-energy probe of physics beyond the Standard Model is reviewed. Traditional searches for deviations from the Standard Model structure of the weak interaction in β\beta decay are discussed in the light of constraints from the LHC and the neutrino mass. Limits on the violation of time-reversal symmetry in β\beta decay are compared to the strong constraints from electric dipole moments. Novel searches for Lorentz symmetry breaking in the weak interaction in β\beta decay are also included, where we discuss the unique sensitivity of β\beta decay to test Lorentz invariance. We end with a roadmap for future β\beta-decay experiments.Comment: Accepted for publication in Rev. Mod. Phys. 86 pages, 13 figure

    Testing Lorentz invariance in orbital electron capture

    Get PDF
    Searches for Lorentz violation were recently extended to the weak sector, in particular neutron and nuclear β\beta decay [1]. From experiments on forbidden β\beta-decay transitions strong limits in the range of 10−610^{-6}-10−810^{-8} were obtained on Lorentz-violating components of the WW-boson propagator [2]. In order to improve on these limits strong sources have to be considered. In this Brief Report we study isotopes that undergo orbital electron capture and allow experiments at high decay rates and low dose. We derive the expressions for the Lorentz-violating differential decay rate and discuss the options for competitive experiments and their required precision.Comment: accepted for publication as a Brief Report in Physical Review

    Prospect of creating a composite fermi/bose superfluid

    Full text link
    We show that composite fermi/bose superfluids can be created in cold-atom traps by employing a Feshbach resonance or coherent photoassociation. The bosonic molecular condensate created in this way implies a new fermion pairing mechanism associated with the exchange of fermion pairs between the molecular condensate and an atomic fermion superfluid. We predict macroscopically coherent, Josephson-like oscillations of the atomic and molecular populations in response to a sudden change of the molecular energy, and suggest that these oscillations will provide an experimental signature of the pairing.Comment: Rejected by PR

    Exploration of Lorentz violation in neutral-kaon decay

    Get PDF
    The KLOE collaboration recently reported bounds on the directional dependence of the lifetime of the short-lived neutral kaon KS0K^0_S with respect to the dipole anisotropy of the cosmic microwave background. We interpret their results in an effective field theory framework developed to probe the violation of Lorentz invariance in the weak interaction and previously applied to semileptonic processes, in particular β\beta decay. In this approach a general Lorentz-violating tensor χμν\chi^{\mu\nu} is added to the standard propagator of the WW boson. We perform an exploratory study of the prospects to search for Lorentz violation in nonleptonic decays. For the kaon, we find that the sensitivity to Lorentz violation is limited by the velocity of the kaons and by the extent to which hadronic effects can be calculated. In a simple model we derive the KS0K^0_S decay rate and calculate the asymmetry for the lifetime. Using the KLOE data, limits on the values of χμν\chi^{\mu\nu} are determined.Comment: accepted for publication in Physics Letters

    BRDFs acquired by directional radiative measurements during EAGLE and AGRISAR

    Get PDF
    Radiation is the driving force for all processes and interactions between earth surface and atmosphere. The amount of measured radiation reflected by vegetation depends on its structure, the viewing angle and the solar angle. This angular dependence is usually expressed in the Bi-directional Reflectance Distribution Function (BRDF). This BRDF is not only different for different types of vegetation, but also different for different stages of the growth. The BRDF therefore has to be measured at ground level before any satellite imagery can be used the calculate surface-atmosphere interaction. The objective of this research is to acquire the BRDFs for agricultural crop types. A goniometric system is used to acquire the BRDFs. This is a mechanical device capable of a complete hemispherical rotation. The radiative directional measurements are performed with different sensors that can be attached to this system. The BRDFs are calculated from the measured radiation. In the periods 10 June - 18 June 2006 and 2 July - 10 July 2006 directional radiative measurements were performed at three sites: Speulderbos site, in the Netherlands, the Cabauw site, in the Netherlands, and an agricultural test site in Goermin, Germany. The measurements were performed over eight different crops: forest, grass, pine tree, corn, wheat, sugar beat and barley. The sensors covered the spectrum from the optical to the thermal domain. The measured radiance is used to calculate the BRDFs or directional thermal signature. This contribution describes the measurements and calculation of the BRDFs of forest, grassland, young corn, mature corn, wheat, sugar beat and barley during the EAGLE2006 and AGRISAR 2006 fieldcampaigns. Optical BRDF have been acquired for all crops except barley. Thermal angular signatures are acquired for all the crop

    Comment on ``Validity of certain soft-photon amplitudes''

    Get PDF
    The criteria suggested by Welsh and Fearing (nucl-th/9606040) to judge the validity of certain soft-photon amplitudes are examined. We comment on aspects of their analysis which lead to incorrect conclusions about published amplitudes and point out important criteria which were omitted from their analysis.Comment: 6 pages plus 1 postscript figure, Revte

    Radium single-ion optical clock

    Get PDF
    We explore the potential of the electric quadrupole transitions 7s\,^2S_{1/2} - 6d\,^2D_{3/2}, 6d\,^2D_{5/2} in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several competitive A^ARa+^+ candidates with A=A= 223 - 229 are identified. In particular, we show that the transition 7s\,^2S_{1/2}\,(F=2,m_F=0) - 6d\,^2D_{3/2}\,(F=0,m_F=0) at 828 nm in 223^{223}Ra+^+, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case, which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency uncertainty of 10−1710^{-17}. With more experimental effort, the 223,225,226^{223,225,226}Ra+^+ clocks could be pushed to a projected performance reaching the 10−1810^{-18} level.Comment: 20 pages, 1 figur
    • …
    corecore