728 research outputs found
Synchronization of Circadian Per2 Rhythms and HSF1-BMAL1:CLOCK Interaction in Mouse Fibroblasts after Short-Term Heat Shock Pulse
Circadian rhythms are the general physiological processes of adaptation to daily environmental changes, such as the temperature cycle. A change in temperature is a resetting cue for mammalian circadian oscillators, which are possibly regulated by the heat shock (HS) pathway. The HS response (HSR) is a universal process that provides protection against stressful conditions, which promote protein-denaturation. Heat shock factor 1 (HSF1) is essential for HSR. In the study presented here, we investigated whether a short-term HS pulse can reset circadian rhythms. Circadian Per2 rhythm and HSF1-mediated gene expression were monitored by a real-time bioluminescence assay for mPer2 promoter-driven luciferase and HS element (HSE; HSF1-binding site)-driven luciferase activity, respectively. By an optimal duration HS pulse (43Β°C for approximately 30 minutes), circadian Per2 rhythm was observed in the whole mouse fibroblast culture, probably indicating the synchronization of the phases of each cell. This rhythm was preceded by an acute elevation in mPer2 and HSF1-mediated gene expression. Mutations in the two predicted HSE sites adjacent (one of them proximally) to the E-box in the mPer2 promoter dramatically abolished circadian mPer2 rhythm. Circadian Per2 gene/protein expression was not observed in HSF1-deficient cells. These findings demonstrate that HSF1 is essential to the synchronization of circadian rhythms by the HS pulse. Importantly, the interaction between HSF1 and BMAL1:CLOCK heterodimer, a central circadian transcription factor, was observed after the HS pulse. These findings reveal that even a short-term HS pulse can reset circadian rhythms and cause the HSF1-BMAL1:CLOCK interaction, suggesting the pivotal role of crosstalk between the mammalian circadian and HSR systems
A Preliminary Study of Microbial Water Quality Related to Food Safety in Recirculating Aquaponic Fish and Vegetable Production Systems
This study examines microbial water quality in recirculating aquaponic systems. The pathogens studied were E. coli and Salmonella, and the levels were compared with existing food safety standards
Managing the Marine Aquarium Trade: Revealing the Data Gaps Using Ornamental Polychaetes
The marine aquarium industry has great potential to generate jobs in low-income coastal communities creating incentives for the maintenance of a healthy coral reef, if effectively managed. In the absence of current monitoring or legislation to govern the trade, baseline information regarding the species, number and source location of animals traded is missing despite being critical for its successful management and sustainability. An industry assessment to establish the number and provenance of species of ornamental polychaetes (sabellids and serpulids) traded was undertaken across UK wholesalers and retailers. Six geographical regions exporting fan worms were identified. Singapore contributed the highest percentage of imports, but of only one worm βtypeβ whereas Bali, the second largest source, supplied five different worm βtypesβ. Over 50% of UK retailers were supplied by one wholesaler while the remainder were stocked by a mixture of one other wholesaler and/or direct imports from the source country. We estimate that up to 18,500 ornamental polychaetes (16,980 sabellids and 1,018 serpulids) are sold annually in the UK revealing a drastic underestimation of currently accepted trade figures. Incorrect identification (based on exporting region or visual characteristics) of traded animals exacerbates the inaccuracy in market quantification, although identification of preserved sabellids using published keys proved just as inconclusive with high within-species variability and the potential for new or cryptic species. A re-description of the polychaete groups traded using a combination of molecular and morphological techniques is necessary for effective identification and market quantification. This study provides the first assessment of ornamental polychaetes but more importantly highlights the issues surrounding the collection of baseline information necessary to manage the aquarium trade. We recommend that future management should be community based and site-specific with financial and educational support from NGOs, local governments and industry members
Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding
Background: Atherosclerosis is an inflammatory process that develops in individuals with known risk factors that include hypertension and hyperlipidaemia, influenced by diet. However, the interplay between diet, inflammatory mechanisms and vascular risk factors requires further research. We hypothesised that interleukin-1 (IL-1) signaling in the vessel wall would raise arterial blood pressure and promote atheroma.
Methodology/Principal Findings: Apoe(-/-) and Apoe(-/-)/IL-1R1(-/-) mice were fed high fat diets for 8 weeks, and their blood pressure and atherosclerosis development measured. Apoe(-/-)/IL-R1(-/-) mice had a reduced blood pressure and significantly less atheroma than Apoe(-/-) mice. Selective loss of IL-1 signaling in the vessel wall by bone marrow transplantation also reduced plaque burden (p<0.05). This was associated with an IL-1 mediated loss of endothelium-dependent relaxation and an increase in vessel wall Nox 4. Inhibition of IL-1 restored endothelium-dependent vasodilatation and reduced levels of arterial oxidative stress.
Conclusions/Significance: The IL-1 cytokine system links atherogenic environmental stimuli with arterial inflammation, oxidative stress, increased blood pressure and atherosclerosis. This is the first demonstration that inhibition of a single cytokine can block the rise in blood pressure in response to an environmental stimulus. IL-1 inhibition may have profound beneficial effects on atherogenesis in man
Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates
The synergistic interaction between various hemi/cellulolytic enzymes has become more important in order to achieve effective and optimal degradation of complex lignocellulose substrates for biofuel production. This study investigated the synergistic effect of three enzymes endoglucanase (EngE), mannanase (ManA) and xylanase (XynA) on the degradation of corn stalk, grass, and pineapple fruit pulp and determined the optimal degree of synergy between combinations of these enzymes. It was established that EngE was essential for degradation of all of the substrates, while the hemicellulases were able to contribute in a synergistic fashion to increase the activity on these substrates. Maximum specific activity and degree of synergy on the corn stalk and grass was found with EngE:XynA in a ratio of 75:25%, with a specific activity of 41.1Β U/mg protein and a degree of synergy of 6.3 for corn stalk, and 44.1Β U/mg protein and 3.4 for grass, respectively. The pineapple fruit pulp was optimally digested using a ManA:EngE combination in a 50:50% ratio; the specific activity and degree of synergy achieved were 52.4Β U/mg protein and 2.7, respectively. This study highlights the importance of hemicellulases for the synergistic degradation of complex lignocellulose. The inclusion of a mannanase in an enzyme consortium for biomass degradation should be examined further as this study suggests that it may play an important, although mostly overlooked, role in the synergistic saccharification of lignocellulose
DNA Methylation and Normal Chromosome Behavior in Neurospora Depend on Five Components of a Histone Methyltransferase Complex, DCDC
Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora
- β¦