1,555 research outputs found

    Time evolution of the reaction front in a subdiffusive system

    Full text link
    Using the quasistatic approximation, we show that in a subdiffusion--reaction system the reaction front xfx_{f} evolves in time according to the formula xf∼tα/2x_{f} \sim t^{\alpha/2}, with α\alpha being the subdiffusion parameter. The result is derived for the system where the subdiffusion coefficients of reactants differ from each other. It includes the case of one static reactant. As an application of our results, we compare the time evolution of reaction front extracted from experimental data with the theoretical formula and we find that the transport process of organic acid particles in the tooth enamel is subdiffusive.Comment: 18 pages, 3 figure

    Fractional Chemotaxis Diffusion Equations

    Get PDF
    We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modelling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macro-molecular crowding. The mesoscopic models are formulated using Continuous Time Random Walk master equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macro-molecular crowding or other obstacles.Comment: 25page

    Measuring subdiffusion parameters

    Full text link
    We propose a method to extract from experimental data the subdiffusion parameter α\alpha and subdiffusion coefficient DαD_\alpha which are defined by means of the relation =2Dα/Γ(1+α)tα =2D_\alpha/\Gamma(1+\alpha) t^\alpha where denotes a mean square displacement of a random walker starting from x=0x=0 at the initial time t=0t=0. The method exploits a membrane system where a substance of interest is transported in a solvent from one vessel to another across a thin membrane which plays here only an auxiliary role. Using such a system, we experimentally study a diffusion of glucose and sucrose in a gel solvent. We find a fully analytic solution of the fractional subdiffusion equation with the initial and boundary conditions representing the system under study. Confronting the experimental data with the derived formulas, we show a subdiffusive character of the sugar transport in gel solvent. We precisely determine the parameter α\alpha, which is smaller than 1, and the subdiffusion coefficient DαD_\alpha.Comment: 17 pages, 9 figures, revised, to appear in Phys. Rev.

    Squeezed States and Hermite polynomials in a Complex Variable

    Full text link
    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pur. Appl. Math. 14, 187 (1961)].Comment: 15 page

    Non-Markovian Levy diffusion in nonhomogeneous media

    Full text link
    We study the diffusion equation with a position-dependent, power-law diffusion coefficient. The equation possesses the Riesz-Weyl fractional operator and includes a memory kernel. It is solved in the diffusion limit of small wave numbers. Two kernels are considered in detail: the exponential kernel, for which the problem resolves itself to the telegrapher's equation, and the power-law one. The resulting distributions have the form of the L\'evy process for any kernel. The renormalized fractional moment is introduced to compare different cases with respect to the diffusion properties of the system.Comment: 7 pages, 2 figure

    Hyperbolic subdiffusive impedance

    Full text link
    We use the hyperbolic subdiffusion equation with fractional time derivatives (the generalized Cattaneo equation) to study the transport process of electrolytes in media where subdiffusion occurs. In this model the flux is delayed in a non-zero time with respect to the concentration gradient. In particular, we obtain the formula of electrochemical subdiffusive impedance of a spatially limited sample in the limit of large and of small pulsation of the electric field. The boundary condition at the external wall of the sample are taken in the general form as a linear combination of subdiffusive flux and concentration of the transported particles. We also discuss the influence of the equation parameters (the subdiffusion parameter and the delay time) on the Nyquist impedance plots.Comment: 10 pages, 5 figure

    Stationarity-conservation laws for certain linear fractional differential equations

    Full text link
    The Leibniz rule for fractional Riemann-Liouville derivative is studied in algebra of functions defined by Laplace convolution. This algebra and the derived Leibniz rule are used in construction of explicit form of stationary-conserved currents for linear fractional differential equations. The examples of the fractional diffusion in 1+1 and the fractional diffusion in d+1 dimensions are discussed in detail. The results are generalized to the mixed fractional-differential and mixed sequential fractional-differential systems for which the stationarity-conservation laws are obtained. The derived currents are used in construction of stationary nonlocal charges.Comment: 28 page

    Levi-Civita cylinders with fractional angular deficit

    Full text link
    The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index {\alpha}. When the fractional index is continued into the negative {\alpha} region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.Comment: 5 figure

    Homeless drug users' awareness and risk perception of peer "Take Home Naloxone" use – a qualitative study

    Get PDF
    BACKGROUND Peer use of take home naloxone has the potential to reduce drug related deaths. There appears to be a paucity of research amongst homeless drug users on the topic. This study explores the acceptability and potential risk of peer use of naloxone amongst homeless drug users. From the findings the most feasible model for future treatment provision is suggested. METHODS In depth face-to-face interviews conducted in one primary care centre and two voluntary organisation centres providing services to homeless drug users in a large UK cosmopolitan city. Interviews recorded, transcribed and analysed thematically by framework techniques. RESULTS Homeless people recognise signs of a heroin overdose and many are prepared to take responsibility to give naloxone, providing prior training and support is provided. Previous reports of the theoretical potential for abuse and malicious use may have been overplayed. CONCLUSION There is insufficient evidence to recommend providing "over the counter" take home naloxone" to UK homeless injecting drug users. However a programme of peer use of take home naloxone amongst homeless drug users could be feasible providing prior training is provided. Peer education within a health promotion framework will optimise success as current professionally led health promotion initiatives are failing to have a positive impact amongst homeless drug users

    Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives

    Full text link
    The classical fields with fractional derivatives are investigated by using the fractional Lagrangian formulation.The fractional Euler-Lagrange equations were obtained and two examples were studied.Comment: 9 page
    • …
    corecore