2,438 research outputs found
Electrical polarization of nuclear spins in a breakdown regime of quantum Hall effect
We have developed a method for electrical polarization of nuclear spins in
quantum Hall systems. In a breakdown regime of odd-integer quantum Hall effect
(QHE), excitation of electrons to the upper Landau subband with opposite spin
polarity dynamically polarizes nuclear spins through the hyperfine interaction.
The polarized nuclear spins in turn accelerate the QHE breakdown, leading to
hysteretic voltage-current characteristics of the quantum Hall conductor.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let
Towards shape representation using trihedral mesh projections
This paper explores the possibility of approximating a surface by a trihedral polygonal mesh plus some triangles at strategic places. The presented approximation has attractive properties. It turns out that the Z-coordinates} of the vertices are completely governed by the Z-coordinates assigned to four selected ones. This allows describing the spatial polygonal mesh with just its 2D projection plus the heights of four vertices. As a consequence, these projections essentially capture the “spatial meaning” of the given surface, in the sense that, whatever spatial interpretations are drawn from them, they all exhibit essentially the same shape.This work was supported by the project 'Resolución de sistemas de ecuaciones cinemáticas para la simulación de mecanismos, posicionado interactivo de objetos y conformación de moléculas' (070-722).Peer Reviewe
Programming models for sensor networks: a survey
Sensor networks have a significant potential in diverse applications some of which are already beginning to be deployed in areas such as environmental monitoring. As the application logic becomes more complex, programming difficulties are becoming a barrier to adoption of these networks. The difficulty in programming sensor networks is not only due to their inherently distributed nature but also the need for mechanisms to address their harsh operating conditions such as unreliable communications, faulty nodes, and extremely constrained resources. Researchers have proposed different programming models to overcome these difficulties with the ultimate goal of making programming easy while making full use of available resources. In this article, we first explore the requirements for programming models for sensor networks. Then we present a taxonomy of the programming models, classified according to the level of abstractions they provide. We present an evaluation of various programming models for their responsiveness to the requirements. Our results point to promising efforts in the area and a discussion of the future directions of research in this area.
Electron spin phase relaxation of phosphorus donors in nuclear spin enriched silicon
We report a pulsed EPR study of the phase relaxation of electron spins bound
to phosphorus donors in isotopically purified 29^Si and natural abundance Si
single crystals measured at 8 K.Comment: 5 pages, 3 figure
The development of air shower in the iron absorber
The iron open-sandwich experiments to observe one dimensional development of individual air showers were carried out at Akeno Observatory. One dimensional energy flow, incident energy and production height of shower is estimated using the data of size and age obtained from the above experiment and simple calculation
Quantum Nernst effect in a bismuth single crystal
We report a theoretical calculation explaining the quantum Nernst effect
observed experimentally in a bismuth single crystal. Generalizing the
edge-current picture in two dimensions, we show that the peaks of the Nernst
coefficient survive in three dimensions due to a van Hove singularity. We also
evaluate the phonon-drag effect on the Nernst coefficient numerically. Our
result agrees with the experimental result for a bismuth single crystal.Comment: 4 pages, 4 figures, to be published in Proceedings of ISQM-Tokyo '0
The anomalous behavior of coefficient of normal restitution in the oblique impact
The coefficient of normal restitution in an oblique impact is theoretically
studied. Using a two-dimensional lattice models for an elastic disk and an
elastic wall, we demonstrate that the coefficient of normal restitution can
exceed one and has a peak against the incident angle in our simulation.
Finally, we explain these phenomena based upon the phenomenological theory of
elasticity.Comment: 4 pages, 4 figures, to be appeared in PR
Fitting Voronoi Diagrams to Planar Tesselations
Given a tesselation of the plane, defined by a planar straight-line graph
, we want to find a minimal set of points in the plane, such that the
Voronoi diagram associated with "fits" \ . This is the Generalized
Inverse Voronoi Problem (GIVP), defined in \cite{Trin07} and rediscovered
recently in \cite{Baner12}. Here we give an algorithm that solves this problem
with a number of points that is linear in the size of , assuming that the
smallest angle in is constant.Comment: 14 pages, 8 figures, 1 table. Presented at IWOCA 2013 (Int. Workshop
on Combinatorial Algorithms), Rouen, France, July 201
- …