24 research outputs found

    Duckweed (Lemnaceae): Its Molecular Taxonomy

    Get PDF
    Duckweeds include the world's smallest and fastest growing flowering plants that have the capacity to produce huge biomass with a broad range of potential applications like production of feed and food, biofuel and biogas. In order to achieve optimal and sustainable commercial system, it is necessary that suitable species and clones of duckweeds be identified and selected based on appropriate strategies. However, a high degree of reduction in their structural complexity poses serious problems in identification of closely related species of duckweeds, on a morphological basis. Use of molecular taxonomic tools is the present solution. The state of the art of molecular taxonomy of all the five genera of duckweeds (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) is based mainly on the techniques of fingerprinting by amplified fragment length polymorphism (AFLP) and barcoding using sequences of plastidic DNA fragments. After more than 15 years of molecular taxonomic investigations, a certain viewpoint is now available demonstrating all five genera to be monophyletic. Also, the phenetic analyses had made huge progress in delineating the currently defined 36 species of duckweeds, although, all species cannot yet be defined with confidence. Wolffiella has turned out to be the most complicated genus as only 6 to 7 species out of the 10 can be reliably delineated. Further progress in the phylogenetic and phenetic analyses requires more advanced methods like next generation and/or whole genome sequencing. First results using the method genotyping-by-sequencing in the genus Lemna (in combination with metabolomic profiling by matrix-assisted laser desorption ionization time-of-flight mass-spectrometry (MALDI-TOF-MS) as well as AFLP and barcoding by plastidic sequences) are more promising: The species Lemna valdiviana and Lemna yungensis were united to one species, Lemna valdiviana. This reduced the total number of Lemnaceae species to 36

    Lemnaceae and Orontiaceae Are Phylogenetically and Morphologically Distinct from Araceae

    Get PDF
    Duckweeds comprise a distinctive clade of pleustophytic monocots that traditionally has been classified as the family Lemnaceae. However, molecular evidence has called into question their phylogenetic independence, with some authors asserting instead that duckweeds should be reclassified as subfamily Lemnoideae of an expanded family Araceae. Although a close phylogenetic relationship of duckweeds with traditional Araceae has been supported by multiple studies, the taxonomic disposition of duckweeds must be evaluated more critically to promote nomenclatural stability and utility. Subsuming duckweeds as a morphologically incongruent lineage of Araceae effectively eliminates the family category of Lemnaceae that has been widely used for many years. Instead, we suggest that Araceae subfamily Orontioideae should be restored to family status as Orontiaceae, which thereby would enable the recognition of three morphologically and phylogenetically distinct lineages: Araceae, Lemnaceae, and Orontiaceae

    Histopathology of the gill of Lutjanus russelli infected with Learnanthropus species (Copepoda: Anthosomatidae)

    Get PDF
    Abstract Histopathologic changes caused by copepods in the gills of Lutjanus russelli were studied. For histological sections, samples were stained by haematoxylin, eosin and mounted permanently in Canada balsam. Microphotographs of selected portions were prepared in support of the damage caused by the parasites. The histopathologic changes caused by the Learnanthropus species (Copepoda: Anthosomatidae) include several destruction and necrotic changes in gill filaments and secondary lamellae were recorded and the results were analysed

    Nutritional Value of the Duckweed Species of the Genus Wolffia (Lemnaceae) as Human Food

    Get PDF
    Species of the genus Wolffia are traditionally used as human food in some of the Asian countries. Therefore, all 11 species of this genus, identified by molecular barcoding, were investigated for ingredients relevant to human nutrition. The total protein content varied between 20 and 30% of the freeze-dry weight, the starch content between 10 and 20%, the fat content between 1 and 5%, and the fiber content was ~25%. The essential amino acid content was higher or close to the requirements of preschool-aged children according to standards of the World Health Organization. The fat content was low, but the fraction of polyunsaturated fatty acids was above 60% of total fat and the content of n-3 polyunsaturated fatty acids was higher than that of n-6 polyunsaturated fatty acids in most species. The content of macro- and microelements (minerals) not only depended on the cultivation conditions but also on the genetic background of the species. This holds true also for the content of tocopherols, several carotenoids and phytosterols in different species and even intraspecific, clonal differences were detected in Wolffia globosa and Wolffia arrhiza. Thus, the selection of suitable clones for further applications is important. Due to the very fast growth and the highest yield in most of the nutrients, Wolffia microscopica has a high potential for practical applications in human nutrition

    Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control.

    Get PDF
    Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth

    A STUDY ON MONOGENEAN PARASITES OF MARINE FISH LUTJANUS JOHNI AND JOHNIUS ANEUS FROM VISAKHAPATNAM COAST, INDIA

    No full text
    From species of monogenes were obtained during a survey of metazoan parasites from Lzajamis ohnfi and Johnius aneus off Visakhapatnum coast. Of these fouir species Ancyrocephalus tnanilensis Tubangui, 1931 and Microcotyle polvnemi MacCallum, 1917 are from L. johni and Dip1oslamenides oc/ospines Unnithan, 197i and Lintaxine cokeri (Linton, 1940) Sporoston, 1946 are from J. towns

    Duckweed: Research Meets Applications

    No full text
    The Special Issue “Duckweed: Research Meets Applications” of the journal Plants (ISSN 2223-7747) presents a comprehensive update of the current progress in the field [...

    Ethnobotanical History: Duckweeds in Different Civilizations

    Get PDF
    This presentation examines the history of duckweeds in Chinese, Christian, Greek, Hebrew, Hindu, Japanese, Maya, Muslim, and Roman cultures and details the usage of these diminutive freshwater plants from ancient times through the Middle Ages. We find that duckweeds were widely distributed geographically already in antiquity and were integrated in classical cultures in the Americas, Europe, the Near East, and the Far East 2000 years ago. In ancient medicinal sources, duckweeds are encountered in procedures, concoctions, and incantations involving the reduction of high fever. In this regard, we discuss a potential case of ethnobotanical convergence between the Chinese Han and Classical Maya cultures. Duckweeds played a part in several ancient rituals. In one, the unsuitability of its roots to serve as a wick for Sabbath oil lamps. In another reference to its early use as human food during penitence. In a third, a prominent ingredient in a medicinal incantation, and in a fourth, as a crucial element in ritual body purifications. Unexpectedly, it emerged that in several ancient cultures, the floating duckweed plant featured prominently in the vernacular and religious poetry of the day

    Intraspecific Diversity in Aquatic Ecosystems: Comparison between Spirodela polyrhiza and Lemna minor in Natural Populations of Duckweed

    No full text
    Samples of two duckweed species, Spirodela polyrhiza and Lemna minor, were collected around small ponds and investigated concerning the question of whether natural populations of duckweeds constitute a single clone, or whether clonal diversity exists. Amplified fragment length polymorphism was used as a molecular method to distinguish clones of the same species. Possible intraspecific diversity was evaluated by average-linkage clustering. The main criterion to distinguish one clone from another was the 95% significance level of the Jaccard dissimilarity index for replicated samples. Within natural populations of L. minor, significant intraspecific genetic differences were detected. In each of the three small ponds harbouring populations of L. minor, based on twelve samples, between four and nine distinct clones were detected. Natural populations of L. minor consist of a mixture of several clones representing intraspecific biodiversity in an aquatic ecosystem. Moreover, identical distinct clones were discovered in more than one pond, located at a distance of 1 km and 2.4 km from each other. Evidently, fronds of L. minor were transported between these different ponds. The genetic differences for S. polyrhiza, however, were below the error-threshold of the method within a pond to detect distinct clones, but were pronounced between samples of two different ponds
    corecore