1,846 research outputs found

    Policy consistency and inflation in Ghana

    Get PDF

    Inflationary trends and control in Ghana

    Get PDF

    Plenoptic x-ray microscopy

    Full text link
    Plenoptic cameras use arrays of micro-lenses to capture multiple views of the same scene in a single compound image. They enable refocusing on different planes and depth estimation. However, until now, all types of plenoptic computational imaging have been limited to visible light. We demonstrate an x-ray plenoptic microscope that uses a concentrating micro-capillary array instead of a micro-lens array and can simultaneously acquire from one hundred to one thousand x-ray projections of imaged volumes that are located in the focal spot region of the micro-capillary array. Hence, tomographic slices at various depths near the focal plane can be reconstructed in a way similar to tomosynthesis, but from a single x-ray exposure. The microscope enables depth-resolved imaging of small subvolumes in large samples and can be used for imaging of weakly absorbing artificial and biological objects by means of propagation phase-contrast.Comment: The following article has been accepted by Applied Physics Letter

    Recombinant ecto-5'-nucleotidase (CD73) has long lasting antinociceptive effects that are dependent on adenosine A1 receptor activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecto-5'-nucleotidase (NT5E, also known as CD73) hydrolyzes extracellular adenosine 5'-monophosphate (AMP) to adenosine in nociceptive circuits. Since adenosine has antinociceptive effects in rodents and humans, we hypothesized that NT5E, an enzyme that generates adenosine, might also have antinociceptive effects <it>in vivo</it>.</p> <p>Results</p> <p>To test this hypothesis, we purified a soluble version of mouse NT5E (mNT5E) using the baculovirus expression system. Recombinant mNT5E hydrolyzed AMP in biochemical assays and was inhibited by α,β-methylene-adenosine 5'-diphosphate (α,β-me-ADP; IC<sub>50 </sub>= 0.43 μM), a selective inhibitor of NT5E. mNT5E exhibited a dose-dependent thermal antinociceptive effect that lasted for two days when injected intrathecally in wild-type mice. In addition, mNT5E had thermal antihyperalgesic and mechanical antiallodynic effects that lasted for two days in the complete Freund's adjuvant (CFA) model of inflammatory pain and the spared nerve injury (SNI) model of neuropathic pain. In contrast, mNT5E had no antinociceptive effects when injected intrathecally into adenosine A<sub>1 </sub>receptor (<it>A</it><sub>1</sub><it>R, Adora1</it>) knockout mice.</p> <p>Conclusion</p> <p>Our data indicate that the long lasting antinociceptive effects of mNT5E are due to hydrolysis of AMP followed by activation of A<sub>1</sub>R. Moreover, our data suggest recombinant NT5E could be used to treat chronic pain and to study many other physiological processes that are regulated by NT5E.</p

    Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch

    Get PDF
    The bacterial flagellar switch that controls the direction of flagellar rotation during chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread—the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes

    Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    Get PDF
    The radical pair model of the avian magnetoreceptor relies on long‐lived electron spin coherence. Dephasing, resulting from interactions of the spins with their fluctuating environment, is generally assumed to degrade the sensitivity of this compass to the direction of the Earth's magnetic field. Here we argue that certain spin relaxation mechanisms can enhance its performance. We focus on the flavin‐tryptophan radical pair in cryptochrome, currently the only candidate magnetoreceptor molecule. Correlation functions for fluctuations in the distance between the two radicals in Arabidopsis thaliana cryptochrome 1 were obtained from molecular dynamics simulations and used to calculate the spin relaxation caused by modulation of the exchange and dipolar interactions. We find that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields to an Earth‐strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes

    Using graph transformation algorithms to generate natural language equivalents of icons expressing medical concepts

    Full text link
    A graphical language addresses the need to communicate medical information in a synthetic way. Medical concepts are expressed by icons conveying fast visual information about patients' current state or about the known effects of drugs. In order to increase the visual language's acceptance and usability, a natural language generation interface is currently developed. In this context, this paper describes the use of an informatics method ---graph transformation--- to prepare data consisting of concepts in an OWL-DL ontology for use in a natural language generation component. The OWL concept may be considered as a star-shaped graph with a central node. The method transforms it into a graph representing the deep semantic structure of a natural language phrase. This work may be of future use in other contexts where ontology concepts have to be mapped to half-formalized natural language expressions.Comment: Presented at the TSD 2014 conference: Text, Speech and Dialogue, 17th international conference. Brno, Czech Republic, September 8-12, 2014. 10 pages, 7 figure

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling
    corecore