256 research outputs found

    JT90 thermal barrier coated vanes

    Get PDF
    The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test

    Optical system and method for gas detection and monitoring

    Get PDF
    A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded

    A new polymorphic material? Structural degeneracy of ZrMn_2

    Full text link
    Based on density functional calculations, we propose that ZrMn_2 is a polymorphic material. We predict that at low temperatures the cubic C15, and the hexagonal C14 and C36 structures of the Laves phase compound ZrMn_2 are nearly equally stable within 0.3 kJmol^{-1} or 30 K. This degeneracy occurs when the Mn atoms magnetize spontaneously in a ferromagnetic arrangement forming the states of lowest energy. From the temperature dependent free energies at T approx 160K we predict a transition from the most stable C15 to the C14 structure, which is the experimentally observed structure at elevated temperatures.Comment: 4 pages, 3 figure

    Implementing virtual collaborative inquiry practises in a middle-school context

    Get PDF
    The aim of the present study was to investigate the challenges that relate to the implementation of virtual inquiry practises in middle school. The case was a school course in which a group of Finnish students (N = 14) and teachers (N = 7) completed group inquiries through virtual collaboration, using a web-based learning environment. The task was to accomplish a cross-disciplinary inquiry into cultural issues. The students worked mainly at home and took much responsibility for their course achievements. The investigators analysed the pedagogical design of the course and the content of the participants' interaction patterns in the web-based environment, using qualitative content analysis and social network analysis. The findings suggest that the students succeeded in producing distinctive cultural products, and both the students and the teachers adopted novel roles during the inquiry. The web-based learning environment was used more as a coordination tool for organizing the collaborative work than as a forum for epistemic inquiry. The tension between the school curriculum and the inquiry practises was manifest in the participants' discussions of the assessment criteria of the course.The aim of the present study was to investigate the challenges that relate to the implementation of virtual inquiry practises in middle school. The case was a school course in which a group of Finnish students (N = 14) and teachers (N = 7) completed group inquiries through virtual collaboration, using a web-based learning environment. The task was to accomplish a cross-disciplinary inquiry into cultural issues. The students worked mainly at home and took much responsibility for their course achievements. The investigators analysed the pedagogical design of the course and the content of the participants' interaction patterns in the web-based environment, using qualitative content analysis and social network analysis. The findings suggest that the students succeeded in producing distinctive cultural products, and both the students and the teachers adopted novel roles during the inquiry. The web-based learning environment was used more as a coordination tool for organizing the collaborative work than as a forum for epistemic inquiry. The tension between the school curriculum and the inquiry practises was manifest in the participants' discussions of the assessment criteria of the course.The aim of the present study was to investigate the challenges that relate to the implementation of virtual inquiry practises in middle school. The case was a school course in which a group of Finnish students (N = 14) and teachers (N = 7) completed group inquiries through virtual collaboration, using a web-based learning environment. The task was to accomplish a cross-disciplinary inquiry into cultural issues. The students worked mainly at home and took much responsibility for their course achievements. The investigators analysed the pedagogical design of the course and the content of the participants' interaction patterns in the web-based environment, using qualitative content analysis and social network analysis. The findings suggest that the students succeeded in producing distinctive cultural products, and both the students and the teachers adopted novel roles during the inquiry. The web-based learning environment was used more as a coordination tool for organizing the collaborative work than as a forum for epistemic inquiry. The tension between the school curriculum and the inquiry practises was manifest in the participants' discussions of the assessment criteria of the course.Peer reviewe

    Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver

    Get PDF
    Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application

    Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model

    Get PDF
    Spatio-temporal models have long been used to describe biological systems of cancer, but it has not been until very recently that increased attention has been paid to structural dynamics of the interaction between cancer populations and the molecular mechanisms associated with local invasion. One system that is of particular interest is that of the urokinase plasminogen activator (uPA) wherein uPA binds uPA receptors on the cancer cell surface, allowing plasminogen to be cleaved into plasmin, which degrades the extracellular matrix and this way leads to enhanced cancer cell migration. In this paper, we develop a novel numerical approach and associated analysis for spatio-structuro-temporal modelling of the uPA system for up to two-spatial and two-structural dimensions. This is accompanied by analytical exploration of the numerical techniques used in simulating this system, with special consideration being given to the proof of stability within numerical regimes encapsulating a central differences approach to approximating numerical gradients. The stability analysis performed here reveals instabilities induced by the coupling of the structural binding and proliferative processes. The numerical results expound how the uPA system aids the tumour in invading the local stroma, whilst the inhibitor to this system may impede this behaviour and encourage a more sporadic pattern of invasion.PostprintPeer reviewe

    Protonation States of Remote Residues Affect Binding-Release Dynamics of the Ligand but not the Conformation of apo Ferric Binding Protein

    Full text link
    We have studied the apo (Fe3+ free) form of periplasmic ferric binding protein (FbpA) under different conditions and we have monitored the changes in the binding and release dynamics of H2PO4- that acts as a synergistic anion in the presence of Fe3+. Our simulations predict a dissociation constant of 2.2±\pm0.2 mM which is in remarkable agreement with the experimentally measured value of 2.3±\pm0.3 mM under the same ionization strength and pH conditions. We apply perturbations relevant for changes in environmental conditions as (i) different values of ionic strength (IS), and (ii) protonation of a group of residues to mimic a different pH environment. Local perturbations are also studied by protonation or mutation of a site distal to the binding region that is known to mechanically manipulate the hinge-like motions of FbpA. We find that while the average conformation of the protein is intact in all simulations, the H2PO4- dynamics may be substantially altered by the changing conditions. In particular, the bound fraction which is 20%\% for the wild type system is increased to 50%\% with a D52A mutation/protonation and further to over 90%\% at the protonation conditions mimicking those at pH 5.5. The change in the dynamics is traced to the altered electrostatic distribution on the surface of the protein which in turn affects hydrogen bonding patterns at the active site. The observations are quantified by rigorous free energy calculations. Our results lend clues as to how the environment versus single residue perturbations may be utilized for regulation of binding modes in hFbpA systems in the absence of conformational changes.Comment: 26 pages, 4 figure

    Changes in Dynamics upon Oligomerization Regulate Substrate Binding and Allostery in Amino Acid Kinase Family Members

    Get PDF
    Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities
    • …
    corecore