669 research outputs found

    Dehydrogenation Catalyst for Organic Hydride on the Basis of Superheated Liquid-Film Concept

    Get PDF
    Reversible reaction couples of hydrogenation and dehydrogenation of organic compounds e.g. methylcyclohexane and toluene, or 2-propanol and acetone, are described in terms of hydrogen supplier to fuel cells, which will satisfy our demands of combined heat and power at various compact sizes. Carbon supported nano-sized metal particles, wetted with the liquid substrate in a reactor, was used for conversion of organic hydrides into hydrogen and organic compounds, being separable by distillation. Vigorous nucleate boiling is important for heat transfer as well as for irreversible bubble evolution, leading hydrogen to the vapor phase. Once the bubble is broken at the interface, catalytic hydrogenation will be prohibited, because gaseous hydrogen is unable to dissolve into the boiling liquid. Catalytic dehydrogenation under superheated liquid-film conditions can thus convert low-quality heats into hydrogen energy

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Ultrafast spin dynamics and critical behavior in half-metallic ferromagnet : Sr_2FeMoO_6

    Full text link
    Ultrafast spin dynamics in ferromagnetic half-metallic compound Sr_2FeMoO_6 is investigated by pump-probe measurements of magneto-optical Kerr effect. Half-metallic nature of this material gives rise to anomalous thermal insulation between spins and electrons, and allows us to pursue the spin dynamics from a few to several hundred picoseconds after the optical excitation. The optically detected magnetization dynamics clearly shows the crossover from microscopic photoinduced demagnetization to macroscopic critical behavior with universal power law divergence of relaxation time for wide dynamical critical region.Comment: 14 pages, 4 figures. Abstract and Figures 1 & 3 are correcte

    Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice

    Get PDF
    BACKGROUND: Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. METHODS: We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors α and β, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. RESULTS: Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen α and β, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor α mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor α and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. CONCLUSION: The results suggest that vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways

    Saturated Ferromagnetism and Magnetization Deficit in Optimally Annealed (Ga,Mn)As Epilayers

    Full text link
    We examine the Mn concentration dependence of the electronic and magnetic properties of optimally annealed Ga1-xMnxAs epilayers for 1.35% < x < 8.3%. The Curie temperature (Tc), conductivity, and exchange energy increase with Mn concentration up to x ~ 0.05, but are almost constant for larger x, with Tc ~ 110 K. The ferromagnetic moment per Mn ion decreases monotonically with increasing x, implying that an increasing fraction of the Mn spins do not participate in the ferromagnetism. By contrast, the derived domain wall thickness, an important parameter for device design, remains surprisingly constant.Comment: 8 pages, 4 figures, submitted for Rapid Communication in Phys Rev

    The impact of predation by marine mammals on Patagonian toothfish longline fisheries

    Get PDF
    Predatory interaction of marine mammals with longline fisheries is observed globally, leading to partial or complete loss of the catch and in some parts of the world to considerable financial loss. Depredation can also create additional unrecorded fishing mortality of a stock and has the potential to introduce bias to stock assessments. Here we aim to characterise depredation in the Patagonian toothfish (Dissostichus eleginoides) fishery around South Georgia focusing on the spatio-temporal component of these interactions. Antarctic fur seals (Arctocephalus gazella), sperm whales (Physeter macrocephalus), and orcas (Orcinus orca) frequently feed on fish hooked on longlines around South Georgia. A third of longlines encounter sperm whales, but loss of catch due to sperm whales is insignificant when compared to that due to orcas, which interact with only 5% of longlines but can take more than half of the catch in some cases. Orca depredation around South Georgia is spatially limited and focused in areas of putative migration routes, and the impact is compounded as a result of the fishery also concentrating in those areas at those times. Understanding the seasonal behaviour of orcas and the spatial and temporal distribution of “depredation hot spots” can reduce marine mammal interactions, will improve assessment and management of the stock and contribute to increased operational efficiency of the fishery. Such information is valuable in the effort to resolve the human-mammal conflict for resources

    Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors

    Get PDF
    We describe a theory of Mn local-moment magnetization relaxation due to p-d kinetic-exchange coupling with the itinerant-spin subsystem in the ferromagnetic semiconductor (Ga,Mn)As alloy. The theoretical Gilbert damping coefficient implied by this mechanism is calculated as a function of Mn moment density, hole concentration, and quasiparticle lifetime. Comparison with experimental ferromagnetic resonance data suggests that in annealed strongly metallic samples, p-d coupling contributes significantly to the damping rate of the magnetization precession at low temperatures. By combining the theoretical Gilbert coefficient with the values of the magnetic anisotropy energy, we estimate that the typical critical current for spin-transfer magnetization switching in all-semiconductor trilayer devices can be as low as 105Acm2\sim 10^{5} {\rm A cm}^{-2}.Comment: 4 pages, 2 figures, submitted to Rapid Communication
    corecore