11 research outputs found

    Creep of binary Fe-Al alloys with ultrafine lamellar microstructures

    Get PDF
    On the Al-rich side of the Fe-Al binary system, the eutectoid decomposition of Fe5Al8 into B2-ordered FeAl and triclinic FeAl2 in the composition range of 55–65 at.% Al produces an ultrafine lamellar microstructure. The compression creep behavior of such two-phase intermetallic materials was investigated in the temperature range 600–800 °C under constant stress. In addition to the fully lamellar Fe-61Al alloy, Fe-58Al and Fe-62Al that included, pro-eutectoid FeAl and FeAl2, respectively, were characterized in terms of their microstructure and creep response. For all microstructures, the strain rate as a function of time and strain exhibits a distinct minimum instead of a steady state creep regime. Microstructure instability, primarily in the vicinity of colony boundaries, is identified as the main reason for the increase in strain rate beyond the minimum. In contrast, lamellar coarsening is shown to be only a secondary factor influencing creep response for the conditions investigated. In comparison to single phase FeAl, the fully lamellar FeAl-FeAl2 shows enhanced creep resistance while the presence of either pro-eutectoid phase leads to a relative deterioration of the creep resistance

    Creep of binary Fe-Al alloys with ultrafine lamellar microstructures

    Get PDF
    On the Al-rich side of the Fe-Al binary system, the eutectoid decomposition of Fe5Al8 into B2-ordered FeAl and triclinic FeAl2 in the composition range of 55–65 at.% Al produces an ultrafine lamellar microstructure. The compression creep behavior of such two-phase intermetallic materials was investigated in the temperature range 600–800 °C under constant stress. In addition to the fully lamellar Fe-61Al alloy, Fe-58Al and Fe-62Al that included, pro-eutectoid FeAl and FeAl2, respectively, were characterized in terms of their microstructure and creep response. For all microstructures, the strain rate as a function of time and strain exhibits a distinct minimum instead of a steady state creep regime. Microstructure instability, primarily in the vicinity of colony boundaries, is identified as the main reason for the increase in strain rate beyond the minimum. In contrast, lamellar coarsening is shown to be only a secondary factor influencing creep response for the conditions investigated. In comparison to single phase FeAl, the fully lamellar FeAl-FeAl2 shows enhanced creep resistance while the presence of either pro-eutectoid phase leads to a relative deterioration of the creep resistance

    Proceedings of International Conference on Women Researchers in Electronics and Computing

    No full text
    This proceeding contains articles on the various research ideas of the academic community and practitioners presented at the international conference, “Women Researchers in Electronics and Computing” (WREC’2021). WREC'21 was organized in online mode by Dr. B R Ambedkar National Institute of Technology, Jalandhar (Punjab), INDIA during 22 – 24 April 2021. This conference was conceptualized with an objective to encourage and motivate women engineers and scientists to excel in science and technology and to be the role models for young girls to follow in their footsteps. With a view to inspire women engineers, pioneer and successful women achievers in the domains of VLSI design, wireless sensor networks, communication, image/ signal processing, machine learning, and emerging technologies were identified from across the globe and invited to present their work and address the participants in this women oriented conference. Conference Title: International Conference on Women Researchers in Electronics and ComputingConference Acronym: WREC'21Conference Date: 22–24 April 2021Conference Location: Online (Virtual Mode)Conference Organizers: Department of Electronics and Communication Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, INDI
    corecore