51 research outputs found

    Molecular detection (k-ras) of exfoliated tumour cells in the pelvis is a prognostic factor after resection of rectal cancer?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After total mesorectal excision (TME) for rectal cancer around 10% of patients develops local recurrences within the pelvis. One reason for recurrence might be spillage of cancer cells during surgery. This pilot study was conducted to investigate the incidence of remnant cancer cells in pelvic lavage after resection of rectal cancer. DNA from cells obtained by lavage, were analysed by denaturing capillary electrophoresis with respect to mutations in hotspots of the <it>k-ras </it>gene, which are frequently mutated in colorectal cancer.</p> <p>Results</p> <p>Of the 237 rectal cancer patients analyzed, 19 had positive lavage fluid. There was a significant survival difference (p = 0.006) between patients with <it>k-ras </it>positive and negative lavage fluid.</p> <p>Conclusion</p> <p>Patients with <it>k-ras </it>mutated cells in the lavage immediately after surgery have a reduced life expectation. Detection of exfoliated cells in the abdominal cavity may be a useful diagnostic tool to improve the staging and eventually characterize patients who may benefit from aggressive multimodal treatment of rectal cancer.</p

    TAp73 is one of the genes responsible for the lack of response to chemotherapy depending on B-Raf mutational status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there have been many studies on the p73 gene, some of its functions still remain unclear. There is little research on the relationship between p73 gene transcription and its protein expression and the response to certain drugs such as oxaliplatin and cetuximab, which are drugs currently used in colorectal cancer.</p> <p>The purpose of this study was to evaluate the impact of TAp73 expression on oxaliplatin and cetuximab-based chemotherapy in colorectal cancer cell lines with different K-Ras and B-Raf mutational status.</p> <p>Methods</p> <p>TAp73 was analyzed in three colorectal tumor cell lines HT-29, SW-480 and Caco-2. mRNA TAp73 was determined using Real time PCR; TAp73 protein by immunoblotting and cell viability was analyzed by the MTT method.</p> <p>Results</p> <p>We found that mRNA and TAp73 protein were decreased in cells treated with oxaliplatin (in monotherapy or combined with cetuximab) when B-Raf is mutated. This was statistically significant and was also associated with higher cell viability after the treatment.</p> <p>Conclusions</p> <p>Here, for the first time we report, that there is a signaling loop between B-Raf activation and p73 function.</p> <p>Low expression of TAp73 in colorectal cancer cell lines with mutated B-Raf may be involved in the lack of response to oxaliplatin in monotherapy or combined with cetuximab.</p

    Intricate macrophage-colorectal cancer cell communication in response to radiation

    Get PDF
    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay. Overall, the establishment of primary human macrophage-cancer cell co-cultures revealed an intricate cell communication in response to ionizing radiation, which should be considered when developing therapies adjuvant to radiotherapy

    Syöpäriski säteilyhaittana

    No full text
    corecore