32 research outputs found

    Performance of waste insulating mineral oil-based biodiesel in a direct-injection CI engine

    Get PDF
    Mineral oil has been used as an insulating fluid in the power industry. However, surplus waste oil poses serious environmental threats because of disposal concerns. Waste to biofuel is an excellent way to deal with waste material from various sources. In this study, the trans-esterification method was utilised to convert the waste-insulating mineral oil into a quality bio-fuel. Waste-insulating transformer oil was converted to biodiesel, and it was tested according to ASTM standards. Four different blends of waste-insulating biodiesel with diesel in 25 per cent (WIOBD25), 50 per cent (WIOBD50), 75 per cent (WIOBD75), and 100 per cent fractions (WIOBD100), were used for performance testing in a direct injection compression ignition (DICI) engine. The combustion parameters such as BSFC, EGT, and BTE were evaluated with varying crank angles and constant engine speed. The waste-insulating biodiesel performance results are then compared with diesel fuel. BSFC increased as the biofuel mixture in diesel was raised, and the brake thermal efficiency (BTE) was significantly reduced compared to diesel for all WIOBD diesel mixtures. Due to the combustion process, a high pressure and heat release rate (HRR) were noticed inside the cylinder with the waste-insulating oil-derived biodiesel samples. WIOBD biodiesel blends produced lower levels of hydrocarbon, carbon monoxide, and smoke emissions than diesel fuel, but greater levels of nitrogen oxides (NOx) were produced than diesel fuel. In addition to lower emissions combined with improved engine performance, the WIOBD25 fuel blend has been found to be experimentally optimal for practical application. As a result, the test findings indicated that WIOBD biodiesel might be used as a substitute for conventional diesel fuel

    Adaptive fault tolerant resource allocation scheme for cloud computing environments

    No full text
    Cloud computing is an optimistic technology that leverages the computing resources to offer globally better and more efficient services than the collection of individual use of internet resources. Due to the heterogeneous and high dynamic nature of resources, failure during resource allocation is a key risk in cloud. Such resource failures lead to delay in tasks execution and have adverse impacts in achieving quality of service (QoS). This paper proposes an effective and adaptive fault tolerant scheduling approach in an effort to facilitate error free task scheduling. The proposed method considers the most impactful parameters such as failure rate and current workload of the resources for optimal QoS. The suggested approach is validated using the CloudSim toolkit based on the commonly used metrics including the resource utilization, average execution time, makespan, throughput, and success rate. Empirical results prove that the suggested approach is more efficient than the benchmark techniques in terms of load balancing and fault tolerance

    Potential of Biosynthesized Silver Nanoparticles as Nanocatalyst for Enhanced Degradation of Cellulose by Cellulase

    No full text
    Silver nanoparticles (AgNPs) as a result of their excellent optical and electronic properties are promising catalytic materials for various applications. In this study, we demonstrate a novel approach for enhanced degradation of cellulose using biosynthesized AgNPs in an enzyme catalyzed reaction of cellulose hydrolysis by cellulase. AgNPs were synthesized through reduction of silver nitrate by extracts of five medicinal plants (Mentha arvensis var. piperascens, Buddleja officinalis Maximowicz, Epimedium koreanum Nakai, Artemisia messer-schmidtiana Besser, and Magnolia kobus). An increase of around twofold in reducing sugar formation confirmed the catalytic activity of AgNPs as nanocatalyst. The present study suggests that immobilization of the enzyme onto the surface of the AgNPs can be useful strategy for enhanced degradation of cellulose, which can be utilized for diverse industrial applications

    Four-Component Domino Strategy for the Combinatorial Synthesis of Novel 1,4-Dihydropyrano[2,3‑<i>c</i>]pyrazol-6-amines

    No full text
    An efficient one-pot four-component domino protocol for the combinatorial synthesis of novel 1,4-dihydropyrano­[2,3-<i>c</i>]­pyrazol-6-amines has been achieved. This transformation presumably occurs via cyclization–Knoevenagel condensation–Michael addition–tautomerism–intramolecular <i>O</i>-cyclization–elimination sequence of reactions. The significant features of this reaction include expedient one-pot process, short reaction time, no column chromatographic purification, excellent yield, and readily available starting materials

    Solvent-free synthesis of azomethines, spectral correlations and antimicrobial activities of some E-benzylidene-4-chlorobenzenamines

    Get PDF
    Some azomethines including substituted benzylidene-4-chlorobenzenamines (E-imines) have been synthesized by fly-ash: PTS catalyzed microwave assisted condensation of 4-chloroaniline and substituted benzaldehydes under solvent-free conditions. The yield of the imines has been found to be more than 85%. The purity of all imines has been checked using their physical constants and UV, IR and NMR spectral data. These spectral data have been correlated with Hammett substituent constants and F and R parameters using single and multi-linear regression analysis. From the results of statistical analysis, the effect of substituents on the above spectral data has been studied. The antimicrobial activities of all imines have been studied using standard methods
    corecore