1,468 research outputs found

    Machine-Readable Privacy Certificates for Services

    Full text link
    Privacy-aware processing of personal data on the web of services requires managing a number of issues arising both from the technical and the legal domain. Several approaches have been proposed to matching privacy requirements (on the clients side) and privacy guarantees (on the service provider side). Still, the assurance of effective data protection (when possible) relies on substantial human effort and exposes organizations to significant (non-)compliance risks. In this paper we put forward the idea that a privacy certification scheme producing and managing machine-readable artifacts in the form of privacy certificates can play an important role towards the solution of this problem. Digital privacy certificates represent the reasons why a privacy property holds for a service and describe the privacy measures supporting it. Also, privacy certificates can be used to automatically select services whose certificates match the client policies (privacy requirements). Our proposal relies on an evolution of the conceptual model developed in the Assert4Soa project and on a certificate format specifically tailored to represent privacy properties. To validate our approach, we present a worked-out instance showing how privacy property Retention-based unlinkability can be certified for a banking financial service.Comment: 20 pages, 6 figure

    Predicting length of treatment for neonatal abstinence syndrome in methadone-exposed neonates.

    Get PDF
    OBJECTIVE: The objective of the study was to identify maternal variables predicting length of treatment for neonatal abstinence syndrome (NAS). STUDY DESIGN: This was a retrospective cohort study of infants treated for NAS during 2000-2006 whose mothers were on methadone maintenance at delivery. Mixed-effects linear regression was used to examine the interaction of maternal and neonatal variables with length of treatment. RESULTS: Of 204 neonates born to methadone exposed mothers, the average dose at delivery was 127 mg daily (25-340 mg) with median length of treatment 32 days (1-122 days). Trimester of initial exposure (P = .33), methadone dose at delivery (P = .198), body mass index (P = .31), antidepressant use (P = .40), cigarette use (P = .76), race (P = .78), and maternal age (P = .84) did not predict length of treatment. In the multivariate analysis, gestational age at delivery and benzodiazepine use were significant predictors of length of treatment. CONCLUSION: Later gestational age and concomitant benzodiazepine use were associated with longer treatment

    Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System

    Full text link
    Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the 1.5<η<2.21.5 < \mid\eta\mid < 2.2 region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 μ\murad pitch arranged in eight η\eta-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO2_{2} 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 μ\murad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 ±\pm 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 ±\pm 1.6 (stat)] μ\murad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by \sim 10 μ\murad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 ±\pm 2.5 stat] μ\murad is measured, consistent with the expected resolution of strip-pitch/12\sqrt{12} = 131.3 μ\murad. Other η\eta-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci. Symposium, Seattle, WA, reference adde

    Peptidoglycan from Immunobiotic Lactobacillus rhamnosus Improves Resistance of Infant Mice to Respiratory Syncytial Viral Infection and Secondary Pneumococcal Pneumonia

    Get PDF
    Several research works have demonstrated that beneficial microbes with the capacity to modulate the mucosal immune system (immunobiotics) are an interesting alternative to improve the outcome of bacterial and viral respiratory infections. Among the immunobiotic strains with the capacity to beneficially modulate respiratory immunity, Lactobacillus rhamnosus CRL1505 has outstanding properties. Although we have significantly advanced in demonstrating the capacity of L. rhamnosus CRL1505 to improve resistance against respiratory infections as well as in the cellular and molecular mechanisms involved in its beneficial activities, the potential protective ability of this strain or its immunomodulatory cellular fractions in the context of a secondary bacterial pneumonia has not been addressed before. In this work, we demonstrated that the nasal priming with non-viable L. rhamnosus CRL1505 or its purified peptidoglycan differentially modulated the respiratory innate antiviral immune response triggered by toll-like receptor 3 activation in infant mice, improving the resistance to primary respiratory syncytial virus (RSV) infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that peptidoglycan from L. rhamnosus CRL1505 significantly improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages with the consequent increases of IFN-γ, IL-10, and IFN-β in the respiratory tract. Our results also showed that the increase of these three cytokines is necessary to achieve protection against respiratory superinfection since each of them are involved in different aspect of the secondary pneumococcal pneumonia that have to be controlled in order to reduce the severity of the infectious disease: lung pneumococcal colonization, bacteremia, and inflammatory-mediated lung tissue injury

    A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Full text link
    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.0848

    Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    Get PDF
    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS

    Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment

    Get PDF
    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector
    corecore