159 research outputs found
Recommended from our members
TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer
T-cell immunoglobulin mucin 3 (TIM3) is an inhibitory molecule that has emerged as a key regulator of dysfunctional or exhausted CD8+ T cells arising in chronic diseases such as cancer. In addition to exhausted CD8+ T cells, highly suppressive regulatory T cells (Tregs) represent a significant barrier against the induction of antitumor immunity. We have found that the majority of intratumoral FOXP3+ Tregs express TIM3. TIM3+ Tregs co-express PD-1, are highly suppressive and comprise a specialized subset of tissue Tregs that are rarely observed in the peripheral tissues or blood of tumor-bearing mice. The co-blockade of the TIM3 and PD-1 signaling pathways in vivo results in the downregulation of molecules associated with TIM3+ Treg suppressor functions. This suggests that the potent clinical efficacy of co-blocking TIM3 and PD-1 signal transduction cascades likely stems from the reversal of T-cell exhaustion combined with the inhibition of regulatory T-cell function in tumor tissues. Interestingly, we find that TIM3+ Tregs accumulate in the tumor tissue prior to the appearance of exhausted CD8+ T cells, and that the depletion of Tregs at this stage interferes with the development of the exhausted phenotype by CD8+ T cells. Collectively, our data indicate that TIM3 marks highly suppressive tissue-resident Tregs that play an important role in shaping the antitumor immune response in situ, increasing the value of TIM3-targeting therapeutic strategies against cancer
TIM-3 Expression Characterizes Regulatory T Cells in Tumor Tissues and Is Associated with Lung Cancer Progression
Background: T cell immunoglobulin-3 (TIM-3) has been established as a negative regulatory molecule and plays a critical role in immune tolerance. TIM-3 is upregulated in exhausted CD8 + T cells in both chronic infection and tumor. However, the nature of TIM-3 +CD4 + T cells in the tumor microenvironment is unclear. This study is to characterize TIM-3 expressing lymphocytes within human lung cancer tissues and establish clinical significance of TIM-3 expression in lung cancer progression. Methodology: A total of 51 human lung cancer tissue specimens were obtained from pathologically confirmed and newly diagnosed non-small cell lung cancer (NSCLC) patients. Leukocytes from tumor tissues, distal normal lung tissues, and peripheral blood mononuclear cells (PBMC) were analyzed for TIM-3 surface expression by flow cytometry. TIM-3 expression on tumor-infiltrating lymphocytes (TILs) was correlated with clinicopathological parameters. Conclusions: TIM-3 is highly upregulated on both CD4 + and CD8 + TILs from human lung cancer tissues but negligibly expressed on T cells from patients' peripheral blood. Frequencies of IFN-Ξ³ + cells were reduced in TIM-3 +CD8 + TILs compared to TIM-3 -CD8 + TILs. However, the level of TIM-3 expression on CD8 + TILs failed to associate with any clinical pathological parameter. Interestingly, we found that approximately 70% of TIM-3 +CD4 + TILs expressed FOXP3 and about 60% of FOXP3 + TILs were TIM-3 +. Importantly, TIM-3 expression on CD4 + T cells correlated with poor clinicopathological parameters of NSCLC such as nodal metastasis and advanced cancer stages. Our study reveals a new role of TIM-3 as an important immune regulator in the tumor microenvironment via its predominant expression in regulatory T cells. Β© 2012 Gao et al
A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells
Reversing the dysfunctional TΒ cell state that arises inΒ cancer and chronic viral infections is the focus of therapeutic interventions; however, current therapies are effective in only some patients and some tumor types. To gain a deeper molecular understanding of the dysfunctional TΒ cell state, we analyzed population and single-cell RNA profiles of CD8+tumor-infiltrating lymphocytes (TILs) and used genetic perturbations to identify a distinct gene module for TΒ cell dysfunction that can be uncoupled from TΒ cell activation. This distinct dysfunction module is downstream of intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional module, as a regulator of dysfunction, and we use CRISPR-Cas9 genome editing to show that it drives a dysfunctional phenotype in CD8+TILs. Our results open novel avenues for targeting dysfunctional TΒ cell states while leaving activation programs intact
Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
The immune response plays an important role in staving off cancer; however, mechanisms of immunosuppression hinder productive anti-tumor immunity. T cell dysfunction or exhaustion in tumor-bearing hosts is one such mechanism. PD-1 has been identified as a marker of exhausted T cells in chronic disease states, and blockade of PD-1βPD-1L interactions has been shown to partially restore T cell function. We have found that T cell immunoglobulin mucin (Tim) 3 is expressed on CD8+ tumor-infiltrating lymphocytes (TILs) in mice bearing solid tumors. All Tim-3+ TILs coexpress PD-1, and Tim-3+PD-1+ TILs represent the predominant fraction of T cells infiltrating tumors. Tim-3+PD-1+ TILs exhibit the most severe exhausted phenotype as defined by failure to proliferate and produce IL-2, TNF, and IFN-Ξ³. We further find that combined targeting of the Tim-3 and PD-1 pathways is more effective in controlling tumor growth than targeting either pathway alone
An Alternate STAT6-Independent Pathway Promotes Eosinophil Influx into Blood during Allergic Airway Inflammation
Enhanced eosinophil responses have critical roles in the development of allergic diseases. IL-5 regulates the maturation, migration and survival of eosinophils, and IL-5 and eotaxins mediate the trafficking and activation of eosinophils in inflamed tissues. CD4βΊ Th2 cells are the main producers of IL-5 and other cells such as NK also release this cytokine. Although multiple signalling pathways may be involved, STAT6 critically regulates the differentiation and cytokine production of Th2 cells and the expression of eotaxins. Nevertheless, the mechanisms that mediate different parts of the eosinophilic inflammatory process in different tissues in allergic airway diseases remain unclear. Furthermore, the mechanisms at play may vary depending on the context of inflammation and microenvironment of the involved tissues. We employed a model of allergic airway disease in wild type and STAT6-deficient mice to explore the roles of STAT6 and IL-5 in the development of eosinophilic inflammation in this context. Quantitative PCR and ELISA were used to examine IL-5, eotaxins levels in serum and lungs. Eosinophils in lung, peripheral blood and bone marrow were characterized by morphological properties. CD4βΊ T cell and NK cells were identified by flow cytometry. Antibodies were used to deplete CD4βΊ and NK cells. We showed that STAT6 is indispensible for eosinophilic lung inflammation and the induction of eotaxin-1 and -2 during allergic airway inflammation. In the absence of these chemokines eosinophils are not attracted into lung and accumulate in peripheral blood. We also demonstrate the existence of an alternate STAT6-independent pathway of IL-5 production by CD4βΊ and NK cells that mediates the development of eosinophils in bone marrow and their subsequent movement into the circulation
Distinct and Overlapping Effector Functions of Expanded Human CD4+, CD8Ξ±+ and CD4-CD8Ξ±- Invariant Natural Killer T Cells
CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4+, CD8Ξ±+ and CD4βCD8Ξ±β double-negative (DN) subsets. CD4+ iNKT cells expanded more readily than CD8Ξ±+ and DN iNKT cells upon mitogen stimulation. CD8Ξ±+ and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d+ cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-Ξ³ and TNF-Ξ±) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8Ξ±>DN>CD4 pattern for Th1 and CD4>DN>CD8Ξ± for Th2. All iNKT subsets could simultaneously produce IFN-Ξ³ and IL-4, but single-positivity for IFN-Ξ³ or IL-4 was strikingly rare in CD4+ and CD8Ξ±+ fractions, respectively. Only CD4+ iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8Ξ±+, DN or CD4+ iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease
Enhanced upper genital tract pathologies by blocking Tim-3 and PD-L1 signaling pathways in mice intravaginally infected with Chlamydia muridarum
<p>Abstract</p> <p>Background</p> <p>Although Tim-3 & PD-L1 signaling pathways play important roles in negatively regulating immune responses, their roles in chlamydial infection have not been evaluated.</p> <p>Methods</p> <p>Neutralization antibodies targeting Tim-3 and PD-L1 were used to treat mice. Following an intravaginal infection with <it>C. muridarum </it>organisms, mice with or without the dual antibody treatment were compared for live chlamydial organism shedding from the lower genital tract and inflammatory pathology in the upper genital tract.</p> <p>Results</p> <p>Mice treated with anti-Tim-3 and anti-PD-L1 antibodies displayed a time course of live organism shedding similar to that of mice treated with equivalent amounts of isotype-matched IgG molecules. The combined antibody blocking failed to alter either the lower genital tract cytokine or systemic humoral and cellular adaptive responses to <it>C. muridarum </it>infection. However, the antibody blocking significantly enhanced <it>C. muridarum</it>-induced pathologies in the upper genital tract, including more significant hydrosalpinx and inflammatory infiltration in uterine horn and oviduct tissues.</p> <p>Conclusions</p> <p>The Tim-3 and PD-L1-mediated signaling can significantly reduce pathologies in the upper genital tract without suppressing immunity against chlamydial infection, suggesting that Tim-3 and PD-L1-mediated negative regulation may be manipulated to attenuate tubal pathologies in women persistently infected with <it>C. trachomatis </it>organisms.</p
- β¦