2,928 research outputs found
The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations
The hot Jupiter HD189733b is the most extensively observed exoplanet. Its
atmosphere has been detected and characterised in transmission and eclipse
spectroscopy, and its phase curve measured at several wavelengths. This paper
brings together results of our campaign to obtain the complete transmission
spectrum of the atmosphere of this planet from UV to IR with HST, using STIS,
ACS and WFC3. We provide a new tabulation of the transmission spectrum across
the entire visible and IR range. The radius ratio in each wavelength band was
rederived to ensure a consistent treatment of the bulk transit parameters and
stellar limb-darkening. Special care was taken to correct for, and derive
realistic estimates of the uncertainties due to, both occulted and unocculted
star spots. The combined spectrum is very different from the predictions of
cloud-free models: it is dominated by Rayleigh scattering over the whole
visible and near infrared range, the only detected features being narrow Na and
K lines. We interpret this as the signature of a haze of condensate grains
extending over at least 5 scale heights. We show that a dust-dominated
atmosphere could also explain several puzzling features of the emission
spectrum and phase curves, including the large amplitude of the phase curve at
3.6um, the small hot-spot longitude shift and the hot mid-infrared emission
spectrum. We discuss possible compositions and derive some first-order
estimates for the properties of the putative condensate haze/clouds. We finish
by speculating that the dichotomy between the two observationally defined
classes of hot Jupiter atmospheres, of which HD189733b and HD209458b are the
prototypes, might not be whether they possess a temperature inversion, but
whether they are clear or dusty. We also consider the possibility of a
continuum of cloud properties between hot Jupiters, young Jupiters and L-type
brown dwarfs.Comment: Accepted for publication in MNRAS. 31 pages, 19 figures, 8 table
Photoemission of a doped Mott insulator: spectral weight transfer and qualitative Mott-Hubbard description
The spectral weight evolution of the low-dimensional Mott insulator TiOCl
upon alkali-metal dosing has been studied by photoelectron spectroscopy. We
observe a spectral weight transfer between the lower Hubbard band and an
additional peak upon electron-doping, in line with quantitative expectations in
the atomic limit for changing the number of singly and doubly occupied sites.
This observation is an unconditional hallmark of correlated bands and has not
been reported before. In contrast, the absence of a metallic quasiparticle peak
can be traced back to a simple one-particle effect.Comment: 4 pages, 4 figures, related theoretical work can be found in
arXiv:0905.1276; shortene
Influence of Anisotropy on Creep in a Whisker Reinforced MMC Rotating Disc
Whisker reinforced MMC may be employed in rotating disc , a common component in friction drives , turbines and a number of other machine components, often exposed to elevated temperatures . Creep characteristics of these composites have been studied analytically using von Mises flow rule and Norton 's steady state creep equations
. The results for isotropic A16061 alloy and for isotropic composite containing 20 vol% SiCµ in a matrix of A16061 alloy have been compared with those obtained for anisotropic composites with characteristic parameters a = 0.7 and 1. 31, indicating respectively relative strengthening and weakening in the tangential direction presumably introduced by either processing or inhomogeneous distribution of reinforcement.The creep strain rates resulting in the isotropic rotating disc made of composite as well as the aluminum alloy, are tensile in the tangential direction but compressive in the axial and radial directions, also conforming to the condition of volume constancy.The creep rates in the composite are significantly reduced (by about three orders of
magnitude) in all the directions compared to those observed in the base alloy. In case of anisotropy lowering the strength in the tangential direction (a> 1.0), the radial stresses in the region near inner periphery of the disc, increase while those near the outer periphery decrease in comparison to those for the isotropic composite . But the tangential stresses reduce in the middle region of the disc and enhances near the inner and the outer periphery, when compared to those for the isotropic composite . The magnitude of stress distribution , however, changes by a small extent due to ani sotropy in the disc introduced through processing or reinforcement distribution . The radial strain rate
which always remained compressive for the isotropic composite and for a = 1.3,becomes tensile in the middle region of the disc when a = 0.7. If a is reduced from
1.3 to 0 . 7, the variation of tensile strain rate in the tangential direction remains similar but the magnitude reduces by five orders of magnitude . Anisotropy therefore, introduces significant change in the strain rates although its effect on the resulting stress
distribution may be relatively small
Are the renormalized band widths in TTF-TCNQ of structural or electronic origin? - An angular dependent NEXAFS study
We have performed angle-dependent near-edge x-ray absorption fine structure
measurements in the Auger electron yield mode on the correlated
quasi-one-dimensional organic conductor TTF-TCNQ in order to determine the
orientation of the molecules in the topmost surface layer. We find that the
tilt angles of the molecules with respect to the one-dimensional axis are
essentially the same as in the bulk. Thus we can rule out surface relaxation as
the origin of the renormalized band widths which were inferred from the
analysis of photoemission data within the one-dimensional Hubbard model.
Thereby recent theoretical results are corroborated which invoke long-range
Coulomb repulsion as alternative explanation to understand the spectral
dispersions of TTF-TCNQ quantitatively within an extended Hubbard model.Comment: 6 pages, 5 figure
Circular dichroism and bilayer splitting in the normal state of underdoped (Pb,Bi)Sr(CaY)CuO and overdoped (Pb,Bi)SrCaCuO
We report an ARPES investigation of the circular dichroism in the first
Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the
dichroism has opposite signs for bonding and antibonding components of the
bilayer-split CuO-band and is antisymmetric with respect to reflections in both
mirror planes parallel to the c-axis. Using this property of the energy and
momentum intensity distributions we prove the existence of the bilayer
splitting in the normal state of the underdoped compound and compare its value
with the splitting in overdoped sample. In agreement with previous studies the
magnitude of the interlayer coupling does not depend significantly on doping.
We also discuss possible origins of the observed dichroism.Comment: 4 RevTex pages, 4 EPS figure
Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy
The conducting interface of LaAlO/SrTiO heterostructures has been
studied by hard X-ray photoelectron spectroscopy. From the Ti~2 signal and
its angle-dependence we derive that the thickness of the electron gas is much
smaller than the probing depth of 4 nm and that the carrier densities vary with
increasing number of LaAlO overlayers. Our results point to an electronic
reconstruction in the LaAlO overlayer as the driving mechanism for the
conducting interface and corroborate the recent interpretation of the
superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless
type.Comment: 4 pages, 4 figure
Laser ablation loading of a radiofrequency ion trap
The production of ions via laser ablation for the loading of radiofrequency
(RF) ion traps is investigated using a nitrogen laser with a maximum pulse
energy of 0.17 mJ and a peak intensity of about 250 MW/cm^2. A time-of-flight
mass spectrometer is used to measure the ion yield and the distribution of the
charge states. Singly charged ions of elements that are presently considered
for the use in optical clocks or quantum logic applications could be produced
from metallic samples at a rate of the order of magnitude 10^5 ions per pulse.
A linear Paul trap was loaded with Th+ ions produced by laser ablation. An
overall ion production and trapping efficiency of 10^-7 to 10^-6 was attained.
For ions injected individually, a dependence of the capture probability on the
phase of the RF field has been predicted. In the experiment this was not
observed, presumably because of collective effects within the ablation plume.Comment: submitted to Appl. Phys. B., special issue on ion trappin
Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ
The electronic structure of the quasi-one-dimensional organic conductor
TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The
experimental spectra reveal significant discrepancies to band theory. We
demonstrate that the measured dispersions can be consistently mapped onto the
one-dimensional Hubbard model at finite doping. This interpretation is further
supported by a remarkable transfer of spectral weight as function of
temperature. The ARPES data thus show spectroscopic signatures of spin-charge
separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR
Electro-kinetic technology as a low-cost method for dewatering food by-product
Increasing volumes of food waste, intense environmental awareness, and stringent legislation have imposed increased demands upon conventional food waste management. Food byproducts that were once considered to be without value are now being utilized as reusable materials, fuels, and energy in order to reduce waste. One major barrier to the valorization of food by-products is their high moisture content. This has brought about the necessity of dewatering food waste for any potential re-use for certain disposal options. A laboratory system for experimentally characterizing electro-kinetic dewatering of food by-products was evaluated. The bench scale system, which is an augmented filter press, was used to investigate the dewatering at constant voltage. Five food by-products (brewer’s spent grain, cauliflower trimmings, mango peel, orange peel, and melon peel) were studied. The results indicated that electro-kinetic dewatering combined with mechanical dewatering can reduce the percentage of moisture from 78% to 71% for brewer’s spent grain, from 77% to 68% for orange peel, from 80% to 73% for mango peel, from 91% to 74% for melon peel, and from 92% to 80% for cauliflower trimmings. The total moisture reduction showed a correlation with electrical conductivity (R2¼0.89). The energy consumption of every sample was evaluated and was found to be up to 60 times more economical compared to thermal processing
Hubble Space Telescope Transmission Spectroscopy of the Exoplanet HD 189733b: High-altitude atmospheric haze in the optical and near-UV with STIS
We present Hubble Space Telescope optical and near-ultraviolet transmission
spectra of the transiting hot-Jupiter HD189733b, taken with the repaired Space
Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover
the range 2900-5700 Ang and reach per-exposure signal-to-noise levels greater
than 11,000 within a 500 Ang bandwidth. We used time series spectra obtained
during two transit events to determine the wavelength dependance of the
planetary radius and measure the exoplanet's atmospheric transmission spectrum
for the first time over this wavelength range. Our measurements, in conjunction
with existing HST spectra, now provide a broadband transmission spectrum
covering the full optical regime. The STIS data also shows unambiguous evidence
of a large occulted stellar spot during one of our transit events, which we use
to place constraints on the characteristics of the K dwarf's stellar spots,
estimating spot temperatures around Teff~4250 K. With contemporaneous
ground-based photometric monitoring of the stellar variability, we also measure
the correlation between the stellar activity level and transit-measured
planet-to-star radius contrast, which is in good agreement with predictions. We
find a planetary transmission spectrum in good agreement with that of Rayleigh
scattering from a high-altitude atmospheric haze as previously found from HST
ACS camera. The high-altitude haze is now found to cover the entire optical
regime and is well characterised by Rayleigh scattering. These findings suggest
that haze may be a globally dominant atmospheric feature of the planet which
would result in a high optical albedo at shorter optical wavelengths.Comment: 14 pages, 14 figures, 4 tables, accepted to MNRAS, revised version
has minor change
- …