5,791 research outputs found

    GRB Energetics in the Swift Era

    Full text link
    We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known redshift that were detected by the Swift spacecraft and monitored by the satellite's X-ray Telescope (XRT). Using the bolometric fluence values estimated in Butler et al. 2007b and the last XRT observation for each event, we set a lower limit the their collimation corrected energy Eg and find that a 68% of our sample are at high enough redshift and/or low enough fluence to accommodate a jet break occurring beyond the last XRT observation and still be consistent with the pre-Swift Eg distribution for long GRBs. We find that relatively few of the X-ray light curves for the remaining events show evidence for late-time decay slopes that are consistent with that expected from post jet break emission. The breaks in the X-ray light curves that do exist tend to be shallower and occur earlier than the breaks previously observed in optical light curves, yielding a Eg distribution that is far lower than the pre-Swift distribution. If these early X-ray breaks are not due to jet effects, then a small but significant fraction of our sample have lower limits to their collimation corrected energy that place them well above the pre-Swift Eg distribution. Either scenario would necessitate a much wider post-Swift Eg distribution for long cosmological GRBs compared to the narrow standard energy deduced from pre-Swift observations. We note that almost all of the pre-Swift Eg estimates come from jet breaks detected in the optical whereas our sample is limited entirely to X-ray wavelengths, furthering the suggestion that the assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap

    Ab initio Folding Potentials for Nucleon-Nucleus Scattering based on NCSM One-Body Densities

    Get PDF
    Calculating microscopic optical potentials for elastic nucleon-nucleus scattering has already led to large body of work in the past. For folding first-order calculations the nucleon-nucleon (NN) interaction and the one-body density of the nucleus were taken as input to rigorous calculations in a spectator expansion of the multiple scattering series. Based on the Watson expansion of the multiple scattering series we employ a nonlocal translationally invariant nuclear density derived from a chiral next-to-next-to-leading order (NNLO) and the very same interaction for consistent full-folding calculation of the effective (optical) potential for nucleon-nucleus scattering for light nuclei. We calculate scattering observables, such as total, reaction, and differential cross sections as well as the analyzing power and the spin-rotation parameter, for elastic scattering of protons and neutrons from 4^4He, 6^{6}He, 12^{12}C, and 16^{16}O, in the energy regime between 100 and 200~MeV projectile kinetic energy, and compare to available data. Our calculations show that the effective nucleon-nucleus potential obtained from the first-order term in the spectator expansion of the multiple scattering expansion describes experiments very well to about 60 degrees in the center-of-mass frame, which coincides roughly with the validity of the NNLO chiral interaction used to calculate both the NN amplitudes and the one-body nuclear density.Comment: 10 pages, 14 figures, 1 tabl

    Asymmetric neutrino emission due to neutrino-nucleon scatterings in supernova magnetic fields

    Full text link
    We derive the cross section of neutrino-nucleon scatterings in supernova magnetic fields, including weak-magnetism and recoil corrections. Since the weak interaction violates the parity, the scattering cross section asymmetrically depends on the directions of the neutrino momenta to the magnetic field; the origin of pulsar kicks may be explained by the mechanism. An asymmetric neutrino emission (a drift flux) due to neutrino-nucleon scatterings is absent at the leading level of O(ÎŒBB/T)\mathcal O(\mu_BB/T), where ÎŒB\mu_B is the nucleon magneton, BB is the magnetic field strength, and TT is the matter temperature at a neutrinosphere. This is because at this level the drift flux of the neutrinos are exactly canceled by that of the antineutrinos. Hence, the relevant asymmetry in the neutrino emission is suppressed by much smaller coefficient of O(ÎŒBB/m)\mathcal O(\mu_BB/m), where mm is the nucleon mass; detailed form of the relevant drift flux is also derived from the scattering cross section, using a simple diffusion approximation. It appears that the asymmetric neutrino emission is too small to induce the observed pulsar kicks. However, we note the fact that the drift flux is proportional to the deviation of the neutrino distribution function from the value of thermal equilibrium at neutrinosphere. Since the deviation can be large for non-electron neutrinos, it is expected that there occurs cancellation between the deviation and the small suppression factor of O(ÎŒBB/m)\mathcal O(\mu_BB/m). Using a simple parameterization, we show that the drift flux due to neutrino-nucleon scatterings may be comparable to the leading term due to beta processes with nucleons, which has been estimated to give a relevant kick velocity when the magnetic field is sufficiently strong as 101510^{15}--101610^{16} G.Comment: 19 pages, 1 figure. Accepted by Physical Review

    Lowest Order Constrained Variational Calculation of Structure Properties of Protoneutron Star

    Full text link
    We calculate the structure properties of protoneutron star such as equation of state, maximum mass, radius and temperature profile using the lowest order constrained variational method. We show that the mass and radius of protoneutron star decrease by decreasing both entropy and temperature. For the protoneutron star, it is shown that the temperature is nearly constant in the core and drops rapidly near the crust.Comment: 14 pages, 12 figures. Int. J. Theor. Phys. (2008) in pres

    Laboratory Experiment of Checkerboard Pupil Mask Coronagraph

    Get PDF
    We present the results of the first laboratory experiment of checkerboard shaped pupil binary mask coronagraphs using visible light, in the context of the R&D activities for future mid-infrared space missions such as the 3.5 m SPICA telescope. The primary aim of this work is to demonstrate the coronagraphic performance of checkerboard masks down to a 10−610^{-6} peak-to-peak contrast, which is required to detect self-luminous extra-solar planets in the mid-infrared region. Two masks, consisting of aluminum films on a glass substrates, were manufactured using nano-fabrication techniques with electron beam lithography: one mask was optimized for a pupil with a 30% central obstruction and the other was for a pupil without obstruction. The theoretical contrast for both masks was 10−710^{-7} and no adaptive optics system was employed. For both masks, the observed point spread functions were quite consistent with the theoretical ones. The average contrast measured within the dark regions was 2.7×10−72.7 {\times} 10^{-7} and 1.1×10−71.1 {\times} 10^{-7}. The coronagraphic performance significantly outperformed the 10−610^{-6} requirement and almost reached the theoretical limit determined by the mask designs. We discuss the potential application of checkerboard masks for mid-infrared coronagraphy, and conclude that binary masks are promising for future high-contrast space telescopes.Comment: 6 pages, 6 figure

    Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism

    Full text link
    We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.Comment: 25 pages; 10 figure

    On the Radii of Close-in Giant Planets

    Get PDF
    The recent discovery that the close-in extrasolar giant planet, HD209458b, transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet, τ\tau Boo b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD209458b and τ\tau Boo b in that context. We find that HD209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of close-in gas giant is not due to the thermal expansion of its atmosphere, but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet, but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (≄\geq0.5 A.U.), no later than a few times 10710^7 years of birth.Comment: aasms4 LaTeX, 1 figure, accepted to Ap.J. Letter

    The first Swift X-ray Flash: The faint afterglow of XRF 050215B

    Get PDF
    We present the discovery of XRF 050215B and its afterglow. The burst was detected by the Swift BAT during the check-out phase and observations with the X-ray telescope began approximately 30 minutes after the burst. These observations found a faint, slowly fading X-ray afterglow near the centre of the error box as reported by the BAT. Infrared data, obtained at UKIRT after 10 hours also revealed a very faint K-band afterglow. The afterglow appear unusual since it is very faint, especially in the infrared with K>20 only 9 hours post burst. The X-ray and infrared lightcurves exhibit a slow, monotonic decay with alpha=0.8 and no evidence for steepening associated with the jet break to 10 days post burst. We discuss possible explanations for the faintness and slow decay in the context of present models for the production of X-ray Flashes.Comment: 8 pages, 5 figures, accepted for publication in Ap

    Jet Breaks in Short Gamma-Ray Bursts. I: The Uncollimated Afterglow of GRB 050724

    Full text link
    We report the results of the \chandra observations of the \swift-discovered short Gamma-Ray Burst GRB 050724. \chandra observed this burst twice, about two days after the burst and a second time three weeks later. The first \chandra pointing occurred at the end of a strong late-time flare. About 150 photons were detected during this 49.3 ks observation in the 0.4-10.0 keV range. The spectral fit is in good agreement with spectral analysis of earlier \swift XRT data. In the second \chandra pointing the afterglow was clearly detected with 8 background-subtracted photons in 44.6 ks. From the combined \swift XRT and \chandra-ACIS-S light curve we find significant flaring superposed on an underlying power-law decay slope of α\alpha=0.98−0.09+0.11^{+0.11}_{-0.09}. There is no evidence for a break between about 1 ks after the burst and the last \chandra pointing about three weeks after the burst. The non-detection of a jet break places a lower limit of 25∘^{\circ} on the jet opening angle, indicating that the outflow is less strongly collimated than most previously-reported long GRBs. This implies that the beaming corrected energy of GRB 050724 is at least 4×10494\times 10^{49} ergs.Comment: 7 pages, ApJ acceped, scheduled for December 20, 2006, ApJ, 65
    • 

    corecore