26 research outputs found

    Effects of the complex mass distribution of dark matter halos on weak lensing cluster surveys

    Full text link
    Gravitational lensing effects arise from the light ray deflection by all of the mass distribution along the line of sight. It is then expected that weak lensing cluster surveys can provide us true mass-selected cluster samples. With numerical simulations, we analyze the correspondence between peaks in the lensing convergence Îș\kappa-map and dark matter halos. Particularly we emphasize the difference between the peak Îș\kappa value expected from a dark matter halo modeled as an isolated and spherical one, which exhibits a one-to-one correspondence with the halo mass at a given redshift, and that of the associated Îș\kappa-peak from simulations. For halos with the same expected Îș\kappa, their corresponding peak signals in the Îș\kappa-map present a wide dispersion. At an angular smoothing scale of ΞG=1arcmin\theta_G=1\hbox{arcmin}, our study shows that for relatively large clusters, the complex mass distribution of individual clusters is the main reason for the dispersion. The projection effect of uncorrelated structures does not play significant roles. The triaxiality of dark matter halos accounts for a large part of the dispersion, especially for the tail at high Îș\kappa side. Thus lensing-selected clusters are not really mass-selected. (abridged)Comment: ApJ accepte

    Reconstructing Three-dimensional Structure of Underlying Triaxial Dark Halos From Xray and Sunyaev-Zel'dovich Effect Observations of Galaxy Clusters

    Full text link
    While the use of galaxy clusters as {\it tools} to probe cosmology is established, their conventional description still relies on the spherical and/or isothermal models that were proposed more than 20 years ago. We present, instead, a deprojection method to extract their intrinsic properties from X-ray and Sunyaev--Zel'dovich effect observations in order to improve our understanding of cluster physics. First we develop a theoretical model for the intra-cluster gas in hydrostatic equilibrium in a triaxial dark matter halo with a constant axis ratio. In this theoretical model, the gas density profiles are expressed in terms of the intrinsic properties of the dark matter halos. Then, we incorporate the projection effect into the gas profiles, and show that the gas surface brightness profiles are expressed in terms of the eccentricities and the orientation angles of the dark halos. For the practical purpose of our theoretical model, we provide several empirical fitting formulae for the gas density and temperature profiles, and also for the surface brightness profiles relevant to X-ray and Sunyaev--Zel'dovich effect observations. Finally, we construct a numerical algorithm to determine the halo eccentricities and orientation angles using our model, and demonstrate that it is possible in principle to reconstruct the 3D structures of the dark halos from the X-ray and/or Sunyaev-Zel'dovich effect cluster data alone without requiring priors such as weak lensing informations and without relying on such restrictive assumptions as the halo axial symmetry about the line-of-sight.Comment: Accepted version, new discussions added, typos and minor mistakes corrected, ApJ in press (2004, Feb. 1 scheduled, Vol. 601, No. 2 issue),26 pages, 7 postscript figure

    Completeness in Photometric and Spectroscopic Searches for Clusters

    Get PDF
    We investigate, using simulated galaxy catalogues, the completeness of searches for massive clusters of galaxies in redshift surveys or imaging surveys with photometric redshift estimates, i.e. what fraction of clusters (M>10^14/h Msun) are found in such surveys. We demonstrate that the matched filter method provides an efficient and reliable means of identifying massive clusters even when the redshift estimates are crude. In true redshift surveys the method works extremely well. We demonstrate that it is possible to construct catalogues with high completeness, low contamination and both varying little with redshift.Comment: ApJ in press, 15 pages, 10 figure

    Measuring Angular Diameter Distances through Halo Clustering

    Get PDF
    Current and upcoming wide-field surveys for weak gravitational lensing and the Sunyaev-Zel'dovich effect will generate mass-selected catalogues of dark matter halos with internal or followup photometric redshift information. The angular power spectrum of these halos provides additional information that complements the previously-studied number counts. In particular, using the shape of the linear power spectrum as a standard ruler that is calibrated by cosmic microwave background measurements, we find that a survey of 4000 sqr. deg. and a mass threshold of 10^14 M_sun can be used to determine the comoving angular diameter distance as a function of redshift. In principle, this test also allows an absolute calibration of the distance scale and measurement of the Hubble constant. This test is largely insensitive to the details of halo mass measurements, mass function, and halo bias. Determination of these quantities would further allow a measurement of the linear growth rate of fluctuations.Comment: 4 pages, 4 figures; final version published in ApJ Letter

    Measuring the Three-Dimensional Structure of Galaxy Clusters. I. Application to a Sample of 25 Clusters

    Get PDF
    We discuss a method to constrain the intrinsic three-dimensionale shapes of galaxy clusters by combining X-Ray and Sunyaev-Zeldovich observations. The method is applied to a sample of 25 X-Ray selected clusters, with measured Sunyaev-Zeldovich temperature decrements. The sample turns out to be slightly biased, with strongly elongated clusters preferentially aligned along the line of sight. This result demonstrates that X-Ray selected cluster samples may be affected by morphological and orientation effects even if a relatively high threshold signal-to-noise ratio is used to select the sample. A large majority of the clusters in our sample exhibit a marked triaxial structure, with prolate-like shapes being slightly more likely than oblate-like ones; the spherical hypothesis is strongly rejected for most sample members. Cooling flow clusters do not show preferentially regular morphologies.Comment: 13 pages, 9 figures. Accepted by Ap

    The Effect of the Cosmic Web on Cluster Weak Lensing Mass Estimates

    Get PDF
    In modern hierarchical theories of structure formation, rich clusters of galaxies form at the vertices of a weblike distribution of matter, with filaments emanating from them to large distances and with smaller objects forming and draining in along these filaments. The amount of mass contained in structure near the cluster can be comparable to the collapsed mass of the cluster itself. As the lensing kernel is quite broad along the line of sight around cluster lenses with typical redshifts near z=0.5, structures many Mpc away from the cluster are essentially at the same location as the cluster itself, when considering their effect on the cluster's weak lensing signal. We use large-scale numerical simulations of structure formation in a Lambda-dominated cold dark matter model to quantify the effect that large-scale structure near clusters has upon the cluster masses deduced from weak lensing analysis. A correction for the scatter in possible observed lensing masses should be included when interpreting mass functions from weak lensing surveys.Comment: 14 pages, 11 figures. LaTeX2e, uses emulateapj.sty and onecolfloat.st

    Weak Lensing by High-Redshift Clusters of Galaxies - I: Cluster Mass Reconstruction

    Full text link
    We present the results of a weak lensing survey of six high-redshift (z > 0.5), X-ray selected clusters of galaxies. We have obtained ultra-deep R-band images of each cluster with the Keck Telescope, and have measured a weak lensing signal from each cluster. From the background galaxy ellipticities we create two-dimensional maps of the surface mass density of each cluster. We find that the substructure seen in the mass reconstructions typically agree well with substructure in both the cluster galaxy distributions and X-ray images of the clusters. We also measure the one-dimensional radial profiles of the lensing signals and fit these with both isothermal spheres and "universal" CDM profiles. We find that the more massive clusters are less compact and not as well fit by isothermal spheres as the less massive clusters, possibly indicating that they are still in the process of collapse.Comment: 43 pages, 15 figures, uses aastex, submitted to ApJ 4 color plates produced here as jpg's, larger versions of the jpgs can be found at http://www.mpa-garching.mpg.de/~clow

    Measuring the Three-Dimensional Structure of Galaxy Clusters. II. Are clusters of galaxies oblate or prolate?

    Get PDF
    The intrinsic shape of galaxy clusters can be obtained through a combination of X-ray and Sunyaev-Zeldovich effect observations once cosmological parameters are assumed to be known. In this paper we discuss the feasibility of modelling galaxy clusters as either prolate or oblate ellipsoids. We analyze the intra-cluster medium distribution for a sample of 25 X-ray selected clusters, with measured Sunyaev-Zeldovich temperature decrements. A mixed population of prolate and oblate ellipsoids of revolution fits the data well, with prolate shapes preferred on a 60-76% basis. We observe an excess of clusters nearly aligned along the line of sight, with respect to what is expected from a randomly oriented cluster population, which might imply the presence of a selection bias in our sample. We also find signs that a more general triaxial morphology might better describe the morphology of galaxy clusters. Additional constraints from gravitational lensing could disentangle the degeneracy between an ellipsoidal and a triaxial morphology, and could also allow an unbiased determination of the Hubble constant.Comment: 9 pages, 8 figures, accepted for publication in Astrophys.

    The non-Gaussian tail of cosmic-shear statistics

    Get PDF
    Due to gravitational instability, an initially Gaussian density field develops non-Gaussian features as the Universe evolves. The most prominent non-Gaussian features are massive haloes, visible as clusters of galaxies. The distortion of high-redshift galaxy images due to the tidal gravitational field of the large-scale matter distribution, called cosmic shear, can be used to investigate the statistical properties of the LSS. In particular, non-Gaussian properties of the LSS will lead to a non-Gaussian distribution of cosmic-shear statistics. The aperture mass (MapM_{\rm ap}) statistics, recently introduced as a measure for cosmic shear, is particularly well suited for measuring these non-Gaussian properties. In this paper we calculate the highly non-Gaussian tail of the aperture mass probability distribution, assuming Press-Schechter theory for the halo abundance and the `universal' density profile of haloes as obtained from numerical simulations. We find that for values of MapM_{\rm ap} much larger than its dispersion, this probability distribution is closely approximated by an exponential, rather than a Gaussian. We determine the amplitude and shape of this exponential for various cosmological models and aperture sizes, and show that wide-field imaging surveys can be used to distinguish between some of the currently most popular cosmogonies. Our study here is complementary to earlier cosmic-shear investigations which focussed more on two-point statistical properties.Comment: 9 pages, 5 figures, submitted to MNRA

    Constraining the Matter Power Spectrum Normalization using the SDSS/RASS and REFLEX Cluster surveys

    Get PDF
    We describe a new approach to constrain the amplitude of the power spectrum of matter perturbations in the Universe, parametrized by sigma_8 as a function of the matter density Omega_0. We compare the galaxy cluster X-ray luminosity function of the REFLEX survey with the theoretical mass function of Jenkins et al. (2001), using the mass-luminosity relationship obtained from weak lensing data for a sample of galaxy clusters identified in Sloan Digital Sky Survey commissioning data and confirmed through cross-correlation with the ROSAT all-sky survey. We find sigma_8 = 0.38 Omega_0^(-0.48+0.27 Omega_ 0), which is significantly different from most previous results derived from comparable calculations that used the X-ray temperature function. We discuss possible sources of systematic error that may cause such a discrepancy, and in the process uncover a possible inconsistency between the REFLEX luminosity function and the relation between cluster X-ray luminosity and mass obtained by Reiprich & Bohringer (2001).Comment: Accepted to ApJ Letters. 4 pages using emulateapj.st
    corecore