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ABSTRACT
In modern hierarchical theories of structure formation, rich clusters of galaxies form at the vertices of

a weblike distribution of matter, with Ðlaments emanating from them to large distances and with smaller
objects forming and draining in along these Ðlaments. The amount of mass contained in structure near
the cluster can be comparable to the collapsed mass of the cluster itself. As the lensing kernel is quite
broad along the line of sight around cluster lenses with typical redshifts structures many mega-z

l
\ 0.5,

parsecs away from the cluster are essentially at the same location as the cluster itself, when considering
their e†ect on the clusterÏs weak lensing signal. We use large-scale numerical simulations of structure
formation in a "-dominated cold dark matter model to quantify the e†ect that large-scale structure near
clusters has upon the cluster masses deduced from weak lensing analysis. A correction for the scatter in
possible observed lensing masses should be included when interpreting mass functions from weak lensing
surveys.
Subject headings : cosmology : theory È galaxies : clusters : general È gravitational lensing

1. INTRODUCTION

The masses of clusters of galaxies are now measurable by
a variety of observational techniques. Most approaches
require some equilibrium assumption which relates the
shape of the cluster potential to the energy content of some
cluster component. For example, measuring or mapping the
temperature of the hot, X-rayÈemitting intracluster plasma
or the velocities of cluster galaxies permits a prediction for
the mass distribution of the cluster.

Another method for estimating cluster masses has been
through observations of weak gravitational lensing of the
background galaxy Ðeld by the cluster. The map of induced
distortions in background galaxy ellipticities can in prin-
ciple be inverted to provide a weighted sum of the mass
density along the line of sight. The weighting is weakest
near the lensed sources and near us, while it is strongest at
intermediate redshifts where the cluster lens is typically
located. Thus, this yields an estimate of the surface mass
density distribution of the cluster and its surroundings,
from which the cluster mass can be inferred. Since assump-
tions about the dynamical or thermodynamic state of the
cluster components are of uncertain validity, while weak
lensing analyses probe the mass distribution directly, esti-
mating cluster masses through weak lensing analyses has
grown extremely popular in the last decade. Several groups
now have moderate samples of weak lensing masses (see,
e.g., Mellier 1999 for a recent review), while others have
applied weak lensing mass estimates to studies of evolution
in the cluster abundance (e.g., Bahcall & Fan 1998).

One interesting outcome of multiwavelength studies of
clusters has been that weak lensing mass estimates for clus-
ters sometimes exceed mass estimates derived from other
sources, typically X-ray observations (see, e.g., Squires et al.
1999). This discrepancy is often considered to be underesti-
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mated, because methods for extracting the mass from weak
lensing data typically depend on the estimated surface
density relative to some value near the edge of the observing
Ðeld, which may contain part of the cluster if the viewing
Ðeld is small. When this discrepancy occurs, it is typically
attributed to either the poor quality of the X-ray data
involvedÈas good X-ray spectra and images become more
difficult to obtain with increasing redshiftÈor to the failure
of equilibrium assumptions about the state of cluster gas at
high redshift.

However, attempts to reconstruct the mass distribution
of clusters from weak lensing observations are not without
pitfalls (see, e.g., Mellier 1999). The most well known of
these is associated with the typically uncertain redshift dis-
tribution of the lensed sources ; still others relate to details
of the procedure adopted to go from the observed ellipticity
distribution to the mass, or from instrumental e†ects. We
here consider another potential issue : the e†ect on mass
estimates from clustered matter near the cluster and in the
observing Ðeld.

In modern hierarchical models of structure formation,
clusters form in overdense regions at the vertices of Ðlamen-
tary structures which extend to large distances from the
cluster ; they accrete additional mass and smaller collapsed
objects that drain along these Ðlaments. It is thus reason-
able to expect a beaded Ðlamentary structure surrounding
most clusters of galaxies. Such overdense Ðlamentary struc-
ture, when viewed in projection through its lensing e†ects,
could add to the lensing signal produced by a cluster and
result in an overestimate of the cluster mass ; in fact, such an
e†ect may have been identiÐed in one cluster (Czoske et al.
1999). In principle clusters could also be located near voids,
leading to a deÐcit of material along the line of sight com-
pared to the mean density. Tentative observational evi-
dence of Ðlamentary structure near clusters has been
reported recently (Scharf et al. 2000 ; Kull & Boehringer
1999 ; Kaiser et al. 1999). A Ðlament lying near or intersec-
ting with the line of sight will also lens the background
galaxies, and therefore contribute spuriously to the lensing
signal. If the observed lensing signal were attributed solely
to the cluster, the inferred cluster mass could be much larger
than its actual mass.
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The impact of projection e†ects upon mass estimators
has been studied in a variety of contexts (see, e.g., van
Haarlem et al. 1997). The contamination of weak lensing
mass estimates by nearby large-scale structure has been
considered to varying degrees in other papers (see, e.g.,

1991 ; Cen 1997 ; Wambsganss, Cen, &Miralda-Escude�
Ostriker 1998 ; Reblinsky & Bartelmann 1999). In a recent
Letter (Metzler et al. 1999) we performed a preliminary
study of this e†ect on three simulated clusters. We now
broaden this work to consider more clusters and apply a
more accurate modeling of the lensing signal produced by
the simulated clusters. In ° 4 we examine how nearby large-
scale structure a†ects mass estimates at mean interior
density contrasts of 200 at a redshift of we alsoz

l
\ 0.5 ;

consider how this e†ect depends on cluster redshift and the
density contrast within which masses are measured. In real
situations, however, an observer is not concerned with the
likelihood of Ðnding a certain lensing mass given a value of
the actual cluster mass ; instead, what is desired is the likeli-
hood distribution of a clusterÏs actual mass, given an obser-
vation of the lensing mass. We consider this in ° 5. In ° 6 we
consider the e†ect of this dispersion in possible observed
lensing masses for a given actual mass upon the observed
mass function of galaxy clusters. The possibility of avoiding
this source of error by using line-of-sight velocity histo-
grams to reject clusters with apparent foreground/
background structure will be addressed in ° 7.1. Finally, we
examine the contribution to this e†ect by material at suc-
cessively larger distances from the cluster in ° 7.2.

2. LENSING THEORY

In the thin lens approximation, the convergence i is
related to the surface density & of the gravitational lens by
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diameter separation between lens and source, respectively.
The convergence is related to the two-dimensional lensing
potential t by

i \ 12+h2t , (2)

with the lensing potential derived from the peculiar poten-
tial / induced by mass inhomogeneities by
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where here the distances and are comoving, a isD
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LSthe cosmic scale factor (scaled to 1 at present), and the
integration is taken along the path traveled by the light ray.
With some algebra, and the use of the Ðrst Friedmann equa-
tion and the Poisson equation for the peculiar potential /,
the convergence i can therefore be written as
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where d is the local overdensity in terms of the average
density For the speciÐc case of Ñat uni-o6 , d \ (o [ o6 )/o6 .
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where Note that this derivation for the con-t \ D
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.

vergence along a particular line of sight assumes the lensed
source(s) to be at a single redshift. For a distribution of
sources one further integrates over where/ dz

s
n(z

s
),

/ dn \ 1.
This last equation (eq. [5]) is the main equation used in

analyzing the simulation data sets. The important point is
that the integrand can be thought of as the product of the
overdensity and a lensing kernel. The width of the kernel,
written here as t(1[ t), along the line of sight typically does
not vary strongly for clusters at intermediate redshifts, even
at large distances from the cluster lens. For instance, for a
lens at and over a distance of 256 h~1 Mpcz

l
\ 0.5 z

s
\ 1.0,

comoving centered on the cluster (the lengths of the lines of
sight we will simulate), the lensing kernel varies from 96%
to 102% of its central value in the Ñat "-dominated cosmol-
ogy we are using. For a lens at and thez

l
\ 1.0 z

s
\ 1.5,

lensing kernel varies from 87% to 111% of its central value
over the same distance. Therefore, mass concentrations out
to large radii from the cluster can still contribute appre-
ciably to the lensing signal.

3. METHOD

3.1. T he Cluster Ensemble
To examine this e†ect, cosmological simulations includ-

ing clusters as well as the large-scale structure in which they
are embedded are needed. Here we have used 12 clusters
from the X-Ray Cluster Data Archive of the Laboratory for
Computational Astrophysics of the National Center for
Supercomputing Applications (NCSA), and the Missouri
Astrophysics Research Group of the University of Missouri
(Norman et al. 2000). To produce these clusters, a particle-
mesh n-body simulation incorporating adaptive mesh
reÐnement was performed in a volume 256 h~1 Mpc on a
side. Regions where clusters formed were identiÐed ; for each
cluster, the simulation was then rerun (including a baryonic
Ñuid) with Ðner resolution grids centered upon the cluster of
interest. In the adaptive mesh reÐnement technique, the
mesh resolution dynamically improves as needed in high-
density regions. The ““ Ðnal ÏÏ mesh scale at the highest
resolution was 15.6 h~1 kpc, with a mean interparticle
separation of about 86 h~1 kpc, allowing good resolution of
the Ðlamentary structure around the cluster. The code itself
is described in detail in Norman & Bryan (1999). Table 1
shows the mass within the radius containing materialr200,
at a mean interior density contrast of 200, at redshifts of 0.5
and 1.0 for the 11 clusters in the ensemble.

The clusters used here were taken at redshifts of z\ 0.5
and z\ 1.0 from simulations of a "CDM model, with pa-
rameters h \ 0.7, and)

m
\ 0.3, )

B
\ 0.026, )" \ 0.7, p8\

0.928. This data set comprises the 12 most massive clusters
at z\ 0, as determined from the initial, low-resolution run.
Their numbering is in order of z\ 0 virial mass ; as each
cluster evolves, this ranking in mass does not necessarily
hold at higher redshifts.

All of the clusters in the ensemble were embedded in a
larger Ðlamentary network of structure. The Ðlaments
themselves were typically resolved by the simulation into a
string of dense knots embedded in more di†use material. In
Figure 1, we show a portion of a slice through the simula-
tion volume, centered on cluster 6 at z\ 0.5, at two suc-
cessive levels of ““ zoom.ÏÏ The Ðlamentary structure in which
the cluster is embedded is apparent, despite the limitations
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TABLE 1

MASSES OF THE CLUSTERS IN THE

ENSEMBLE WITHIN d6 \ 200

M200
(1015 M

_
)

CLUSTER z\ 0.5 z\ 1.0

0 . . . . . . . . 0.83 0.24
1 . . . . . . . . 0.86 0.64
2 . . . . . . . . 0.35 0.23
3 . . . . . . . . 0.58 0.25
4 . . . . . . . . 0.70 0.25
5 . . . . . . . . 0.52 0.27
6 . . . . . . . . 0.52 0.38
7 . . . . . . . . 0.48 0.38
8 . . . . . . . . 0.61 0.40
9 . . . . . . . . 0.64 0.26
10 . . . . . . . 0.38 0.12
11 . . . . . . . 0.55 0.25

of the two-dimensional image. Since much of the mass in
Ðlaments is at comparatively low density contrast, the exis-
tence of this structure near the line of sight would not be
easy to constrain by observations of redshifts near the
cluster. We will examine this point further in ° 7.1.

3.2. Analysis
For a speciÐc line of sight through a simulated cluster, a

map of the convergence i was constructed by viewing the
cluster and its surroundings through a 40@ square window.
This window was then divided into a 512] 512 grid, and
equation (5) was integrated up along the line of sight
through each pixel to produce the Ðnal map.

A potential source of error lies in the integration path
used. Formally, the integration should be performed along
the perturbed path of a light ray, while we take the integra-
tion along the unperturbed path. However, outside the
large density contrasts in the cores of clusters, we are in the
weak lensing regime. The deÑection *y induced by crossing
a perturbation over an e†ective scale *z can be approx-
imated by

*y ^
/
c2 *z , (6)

where / is the magnitude of the potential. The maximum
value for //c2 to be expected in the simulation volume is
that of the typical value for rich clusters, 10~5. This suggests
that the deÑection in photon path induced by crossing the
simulation volume is typically smaller than the Ðlamentary
structure of interest, and much smaller than the cluster radii
at a Ðxed density contrast which we wish to estimate from
the convergence maps. Furthermore, in real observations,
the measured shear comes from the gradient in deÑection
angle across the image plane, and thus is related to change
in the gradient of the potential across the image plane. This
is small. Therefore, the error induced by integrating straight
through the volume, over the unperturbed photon path,
should not appreciably a†ect the values of the radii deter-
mined from the convergence maps.

Several interesting statistics can be drawn from a con-
vergence map so obtained. As an example, multiplying the
map by for the cluster and lensed source redshifts of&critinterest transforms the map into a projected surface density

FIG. 1.ÈSlice through the simulation volume, showing simulated
Cluster 6 at z\ 0.5, at two levels of magniÐcation. Dots represent simula-
tion particles. The slice has a comoving thickness of 76.8 h~1 Mpc. The top
frame shows a window of width 102.4 h~1 Mpc comoving, centered on the
cluster ; for clarity, only half of the mass in the viewing window is shown.
The lower frame shows a magniÐcation of a 10.2 h~1 Mpc radius circle
centered on the cluster ; here only one-eighth of the lowest mass particles
are shown for clarity.

map. This map can then be used to estimate the radiusr200,
within which the mean interior density contrast is 200. In
three dimensions, this radius is deÐned in terms of the
enclosed mass by

M(\r200) \ 200
A4n

3
B
)

m
ocrit r2003 . (7)

A projected estimate of is then extracted from ther200surface density map by considering the radius of the circle,
centered on the cluster, which contained the amount of
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mass given by equation (7) above, i.e.,

P
0

2n
dh
P
0

r200
R dR&(R, h)\ M(\r200) , (8)

with &(R, h) the surface density on the map in terms of a
two-dimensional radius R. An estimate of the radius at a
density contrast of 500 can be obtained by a similar pro-
cedure. Note that this approach implicitly assumes that all
the mass in the convergence map is associated with the
cluster ; except for lines of sight which are substantially
underdense outside the cluster, this approach should result
in overestimates of radii at a Ðxed overdensity, and thus of
the mass at those radii. However, the scatter in such esti-
mates, for di†erent lines of sight, is driven by the dispersion
in mass outside the cluster but inside a line of sightÏs
viewing window. Unless an estimator makes an explicit
attempt to correct for such contamination, the scatter in
this simple projected estimate should be comparable to that
in a di†erent estimator.

The technique of aperture densitometry allows another
useful quantity to be extracted from the convergence map:
the so-called f statistic, deÐned as the mean value of the
convergence i within a circular area on the sky of radius r1minus the mean value within a bounding annulus r1 ¹ r ¹

(Fahlman et al. 1994 ; Kaiser 1995).r2
f(r1, r2)\ Si(0, r1)T [ Si(r1, r2)T . (9)

This quantity can be written as an integral of the tangential
shear c

t
,

f(r1, r2)\
2

1 [ r12/r22
P
r1

r2 dr
r

Sc
t
T , (10)

and it is this way that the f statistic is normally measured
from the observational data. However, it can also be mea-
sured from mock convergence maps constructed from our
data. If the mean convergence in the outer annulus is
thought of as an estimate of the ““ background ÏÏ contribu-
tion to i everywhere, then f provides an estimate of the
convergence signal which comes from the cluster alone.
Multiplying f through by then gives a surface density,&critwhich can be manipulated as above to Ðnd the radius at a
density contrast of 200. This, in principle, can be thought of
as an attempt to correct for the projection e†ect we consider
here ; note that if the second, subtracted term in equation (9)
were not present, the masses found from the f statistic
would be identically those found from equation (8).

Before examining each cluster and extracting such sta-
tistics, the particle data set was cut down to a 128 h~1 Mpc
radius sphere centered on the cluster of interest. This guar-
antees that di†erent lines of sight through the cluster do not
include additional mass simply by geometry, by being near
diagonals of the simulation cube. Since the radius of the
spherical data set is very large compared to the radii at a
Ðxed density contrast obtained for each cluster, no signiÐ-
cant radial surface density gradient is introduced by a
decreasing chord length through the sphere with projected
radius.

We observed each of the 11 clusters used from 5000 ran-
domly chosen viewing angles, for each of the two redshifts
studied. For each cluster and viewing angle, a map of the
convergence i was constructed using the formalism
described in the previous section. To illustrate the result of
this process, Figure 2 shows a view of Cluster 6 at z

l
\ 0.5

along one particular line of sight, along with contours

FIG. 2.ÈView of Cluster 6 at z\ 0.5 in projection through the simula-
tion volume. The window is 1600A on a side, corresponding to a linear size
of 10.3 h~1 Mpc at z\ 0.5. Dots represent simulation particles ; only one-
eighth (12.5%) of the lowest mass particles in the viewing window are
shown. Contours overlaid on the plot show lines of constant convergence i
from the convergence map determined from the mass distribution in the
viewing window. The lowest solid contour is at 0.02, while all other con-
tours step up by 0.04 from i \ 0.04. The dotted line marks contours where
the calculated convergence is zero, and thus denotes areas of the map
which show a negative value for i. This viewing angle corresponds to a
mass estimate within a density contrast of 200 of Mlens \ 2.7Mtrue.

showing the convergence map resulting from the procedure
described in the previous section. We take the lensed
sources to be at a redshift for the clusters studied atz

s
\ 1.0

while the sources were assumed to be atz
l
\ 0.5, z

s
\ 1.5

when the clusters were examined at Note that byz
l
\ 1.0.

placing the lensed sources at a Ðxed, known redshift, we are
ignoring the potentially large source of error associated
with an unknown source redshift distribution.

With the convergence map, and thus an implied surface
density map in hand, a lensing estimate of was thenr200obtained by determining the radius at which the mass given
by equation (8) equals the mass inferred from equation (7),
that is, the radius at which the interior mass in the surface
density map would be at a density contrast of 200 if con-
tained within a sphere of that radius. This radius was com-
pared to the clusterÏs true extracted from ther200,three-dimensional mass distribution. The ratio of the pro-
jected mass to true mass within a density contrast of 200 is
given simply by the cube of the ratio of the estimated value
of to the true, three-dimensional value. For eachr200cluster, a value of this ratio was obtained for each viewing
angle. This process was repeated 5000 times for each cluster
at each redshift. The same procedure was followed to gener-
ate values of The probability of encountering a partic-r500.ular ratio of (where by we mean the actualMlens/Mtrue Mtruemass within a three-dimensional radius containing the
chosen overdensity) was then examined by plotting histo-
grams of the results of this procedure.

In preparing these histograms for analysis, lines of sight
producing ratios greater than 2 (i.e., estimated masses o† by
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more than 100%) were excluded from the histograms. In
many cases, such lines of sight pass through a second rich
cluster, of greater mass than the one being studied. In the
real universe, such a situation should be detectable through
the distribution of galaxy redshifts in the viewing Ðeld ; typi-
cally, the more massive cluster is likely to be the one of
interest, resulting in a ratio for that cluster less than would
occur for the smaller cluster. Of course, it remains possible
that some lines of sight with would be pro-Mlens/Mtrue[ 2
duced through lines of sight which do not pass through a
larger cluster, and thus would not be excluded so easily by
the actual observer. However, in the spirit of making a
conservative estimate of the magnitude of this e†ect, we
uniformly exclude lines of sight with ratios so large. Fur-
thermore, any lines of sight which pass within 3 h~1 Mpc of
another rich cluster in the simulation volume, but were not
caught by the ““ factor of 2 ÏÏ limit just described, were simi-
larly excluded.

Also excluded were lines of sight that were within 10¡ of
one of the principal axes of the simulation volume. The
issue here is that the simulations incorporated periodic
boundary conditions ; along a principal axis of the box,
structure at opposite ends of the line of sight through the
simulation volume are correlated. Therefore, a density
enhancement at one end makes a density enhancement at
the other end more likely. Excluding lines of sight near the
simulation volumeÏs principal axes reduces any spurious
signal produced by the periodic boundary conditions.

4. EFFECT OF STRUCTURE ON MASS ESTIMATES

4.1. Measurements of atM200 z
l
\ 0.5

We begin by considering the e†ect of the network of
structure in which the cluster is embedded on simple esti-
mates of the mass within a mean interior density contrast of
200. As noted above, the ratio of the estimated lensing mass
within this density contrast to the actual, three-dimensional
mass containing matter at this mean density contrast is
given by where is determined from(r200,est/r200,3D)3, r200,estthe convergence map as described above, and isr200,3Ddetermined directly from the full three-dimensional mass
distribution. Figure 3 shows histograms of the results of this
for each cluster in the ensemble. Here the clusters were
observed at a redshift of the lensed sources werez

l
\ 0.5 ;

assumed to lie at a redshift The histograms showz
s
\ 1.0.

the resulting ratio of estimated to actual mass for the 5000
random viewing angles used. The clusters are ordered in the
plot by their mass at this redshift, from heaviest to lightest.

Several general properties of the histograms in Figure 3
are worth noting. First, the occasional ““ spiky ÏÏ nature of
the histograms does not come from shot noise ; instead, it is
due to discrete objects being inside or outside the visual
Ðeld. As an example, a small halo of matter near the cluster
will project entirely within the actual three-dimensional

for a fraction of the lines of sight. For any such line ofr200sight, the e†ect on the estimated value of is identical.r200Second, the histograms are strongly positively skewed, even
after excluding lines of sight that are likely to generate large
positive biases in the estimated mass.

The most important point to note from these histograms,
however, is the magnitude of the dispersion in possible
values of the mass ratio. The large dispersion is not induced
by the anisotropic structure of the cluster itself ; this was
checked by regenerating the histogram for one of the clus-

ters using a subset of the simulation particles intended to
represent the cluster alone. This was done by identifying
particles located at and around the cluster at local density
contrasts above d \ 70 (chosen because density proÐles
near r~2 reach a local density contrast near 70 at a mean
interior density contrast of 200). This set was identiÐed as
the cluster, and a small sphere containing this subset but
little nearby material was then cut out of the simulation
volume. The histogram produced by viewing the clearly
prolate cluster at a large number of randomly chosen
viewing angles produced a much narrower distribution,
with a maximum o†set of less than 10% in the mass ratio
and a mean o†set of approximately half that value.

We will see in ° 7.2 that the mean values of the histograms
are driven by material within 20 Mpc of the cluster ;
material outside this distance serves primarily to widen the
dispersion in possible values of resulting fromMlens/Mtruean observation. While the mass estimator used herein is
simplistic, and by construction was expected to produce a
positive bias in the mass estimate, any estimator which
might correct for such bias (by, for instance, assuming a
model for the radial distribution of matter outside clusters)
will still run afoul of this large dispersion. Large discrep-
ancies between the weak lensing mass and the virial mass of
clusters are possible.

In Figure 4, to illustrate using another mass estimator, we
show aperture densitometry plots for Cluster 6 for Ðve lines
of sight through the cluster. The lines of sight were chosen
to span a range in from the simple projectedMlens/Mtrueestimator of from 1.0 to 2.0. We have taken an outer radius
of within the half-degree Ðeld of view typical ofh2\ 800@@,
new large CCD cameras. We have explicitly checked that
reducing the radius to half this value does not change our
result. Also shown are two curves marking the value
required of f at a given radius for that radius to enclose a
given estimated density contrast. For example, where a par-
ticular f proÐle crosses the line labeled ““ 200 ÏÏ marks the
radius that aperture densitometry would suggest is forr200that line of sight. If a f proÐle lies above that curve, the
mean interior density contrast at that radius is higher than
200, while below implies lower than 200. Among the lines of
sight shown, the largest estimated is a factor of 1.18r200larger than the smallest, corresponding to a factor of 1.63
di†erence in mass ; this should be compared to the factor of
2 di†erence between largest and smallest masses predicted
by the simple projected estimator. Thus, the masses predict-
ed from aperture densitometry appear to have a dispersion
tighter than given by simple projected mass estimates, but
still quite substantial ; techniques such as aperture densi-
tometry can ameliorate our problem but do not resolve it.
None of the curves shown clearly indicate anything
untoward about the line of sight shown; an observer would
not be driven to suspect a strong bias in the estimated mass
from the shape of the f proÐle, even in the most extreme
cases shown here.

The histograms in Figure 3 were used to construct a
cumulative probability distribution function (PDF) for the
possible values of A plot of the PDF is shownMlens/Mtrue.in Figure 5. Also shown is a simple approximation to the
shape of the PDF with a smooth curve. As there is no
theoretical prejudice in favor of any particular shape for the
curve used, a simple approximation using polynomials was
constructed by hand, for use later in ° 5. It errs on the
conservative side, in that the strength of the e†ect predicted
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FIG. 3.ÈHistograms of measured within a mean interior density contrast at z\ 0.5. Clusters are ordered by with the massMlens/Mtrue, d6 \ 200, Mtrue,given for each cluster in units of 1015 Lines of sight near the box principal axes, through identiÐed large clusters, or producing mass estimates twice thatM
_

.
of the cluster, are all excluded. The vertical hash mark near the top of each box indicates the location of the mean for that clusterÏs histogram; the dotted hash
mark indicates the median.

by the smooth curves is less than is actually seen in the
simulated data ; the mean of the curve shown is 1.28 with a
dispersion of 0.23, in contrast to the actual data, which
show a mean of 1.32 and a dispersion of 0.26. This is again
in the spirit of suggesting a conservative lower bound for
the size of the e†ect in ° 5.

4.2. Measuring Masses at Higher Density Contrast
Note that in Figure 4 the dispersion in estimated values

of is much tighter for the lines of sight shown. Thisr500suggests that measuring masses within a higher mean inte-
rior density contrast reduces the magnitude of this e†ect.
Figure 6 repeats the exercise in constructing Figure 3, but
with measuring the estimated and actual mass within a
density contrast of 500.

From these histograms, it does not appear that any such
reduction in the magnitude of the dispersion occurs. The
mean for the cumulative PDF of these histograms is 1.44,
much larger than the mean of 1.32 found for the histo-r200grams ; the standard deviation is 0.23, only slightly (but

statistically signiÐcantly) smaller than for the case.r200There appears to be little reduction in dispersion, and no
reduction in bias, by going to with the simple projectedr500estimator. The reason behind not seeing any reduction in
the bias here, yet apparently seeing such a reduction in the
predictions of the lines of sight examined in Figure 4, is
likely attributable to the e†ect of subtracting the outer
annular mean of the convergence in constructing f. Without
this term in the deÐnition of fÈif f were deÐned solely by
the average i within a given radiusÈthen the masses thus
calculated would be simply a product of the surface area
within that radius, and f the average value of the con-
vergence. This is identically the same process as is used to
Ðnd Figure 4. Therefore, the decrease in dispersion must be
from subtracting o† the outer annulus. In other words,
whether measuring masses at a higher density contrast
reduces the magnitude of the dispersion appears to depend
on the estimator used ; determining the dispersion of a pro-
posed estimator through methods such as those used here is
important for understanding the results of the estimator.
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FIG. 4.ÈAperture densitometry plot for one cluster (6), showing f-
proÐles for Ðve lines of sight, as well as curves which mark the value of f at
a given radius for a mean interior density contrast of 200 or 500. Here h
deÐnes the inner radius of the aperture used for each point, with the outer
radius at 800A. The lines of sight used were chosen because the simple
projected estimator, applied to each line of sight, returned a value of 1.00
(solid curve), 1.25 (dotted curve), 1.50 (short-dashed curve), 1.75 (long-dashed
curve), and 2.00 (dot-dashed curve).

Previously, studies of the accuracy of cluster X-ray
binding mass estimates showed that such estimates were
much more robust when measured within a mean interior
density contrast of than when was used, ford6 \ 500 d6 \ 200
reasons related to the dynamical and thermodynamic state
of the intracluster gas (Evrard, Metzler, & Navarro 1996). It
is somewhat surprising that no comparable result appears

FIG. 5.ÈPDF of for the ensemble at z\ 0.5. The pointsMlens/Mtruemark the PDF as derived from the ensemble, while the solid curve shows
an intentionally conservative polynomial approximation to the data.

here. Since the means of the histograms displayed in Figure
3 show range from 1.24 to 1.37, it is quite possible that
sample variance plays a role here.

4.3. Evolution with Redshift
Also of interest is how the evolution of structure a†ects

the magnitude of this e†ect. We might expect the contami-
nation by projected structure to be worse for clusters at
higher redshift. Consider a cluster at z\ 0.5 from a particu-
lar line of sight. As the cluster evolved from z\ 1.0 to
z\ 0.5, the amount of projected mass within a 40@ Ðeld of
view likely changed little. What changed, instead, was the
amount of this mass contained within the cluster of interest,
and the amount contained in smaller halos and nearby Ðla-
mentary structure that merged with the cluster in the inter-
vening time. Thus, large clusters with a small amount of
foreground and background material (and thus a small
e†ect on the mass estimate) at z\ 0.5 were likely smaller
clusters with a somewhat larger amount of foreground and
background material (and thus a larger e†ect on the mass
estimate) at z\ 1.0.

Figure 7 shows the histograms for esti-Mlens/Mtrue M200mated for the clusters at z\ 1.0. Again, the clusters are
ordered by their mass at that redshift, with the mass in units
of 1015 shown, and a vertical hash mark denoting theM

_mean of each histogram. By eye, for most clusters, both the
means and the dispersions are consistently larger than their
counterparts at z\ 0.5. This is not always true ; Cluster 6 is
an exception to this rule. A coadded histogram of the
z\ 1.0 data yields a mean and dispersion of 1.36 and 0.27,
compared to 1.32 and 0.26 at z\ 0.5. The e†ect is not large
but, coming from 5000 lines of sight, is statistically signiÐ-
cant ; for instance, the di†erence between the two means is
signiÐcantly larger than the uncertainties in their values.
Thus, while we continue our analysis using the z\ 0.5 data
set, to be conservative about the magnitude of this e†ect, it
should be noted that the problem is likely worse for clusters
at still higher redshift.

5. LIKELIHOOD OF CLUSTER ACTUAL MASS GIVEN AN

OBSERVED ESTIMATE

In the previous section, we considered the distribution of
possible values of the ratio that is, the distribu-Mlens/Mtrue,tion of possible observational estimates for the mass of a
cluster given its true mass within the density contrast of
interest. In the real universe, however, the problem faced by
an observer is the opposite : given an estimate of the mass
taken from observations, what might the actual mass of the
cluster be? The histograms we examined in the previous
section give us the probability of observing a certain lensing
mass given a certain true mass, in real situ-P(Mlens oMtrue) ;ations, we typically desire the inverse quantity, the likeli-
hood of a true mass of a given value, given an observed
lensing mass, P(Mtrue oMlens).We can examine this by considering clusters with an
observed mass If the probability of a cluster with aMlens.true mass M being observed with mass is given byMlensand if the number density of clusters with trueP(Mlens oM),
mass in the range (M, M ] dM) is given by n(M)dM, then
the product gives the number densityP(Mlens oM)n(M)dM
of clusters with true masses in the range (M, M ] dM),
which are then observed to have an e†ective lensing mass

Since the total number density of clusters withMlens.observed mass should be given by an integral of thisMlens
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FIG. 6.ÈHistograms of measured within a mean interior density contrast at z\ 0.5. Clusters are ordered by with the massMlens/Mtrue, d6 \ 500, Mtrue,given for each cluster in units of 1015 M
_

.

function, we can Ðnd the likelihood of interest by forming
the fraction. In other words,

/
M1
M2 P(Mlens oM)n(M)dM
/0=P(Mlens oM)n(M)dM

(11)

gives the probability that a cluster with an observed lensing
mass has an actual mass in the rangeMlens (M1, M2).We can understand the qualitative nature of the e†ect by
examining the terms of the integral in the numerator. In the
previous section, we noted the biased form of the

distribution ; this argues that observed massesMlens/Mtrueare likely overestimates of the true mass of a cluster. One
can imagine that this bias could be corrected for, using an
estimator that takes contamination of the mass estimate by
foreground and background mass into account. This would
remove such a bias, but not the distribution of the scatter
about the mean.

However, we must also consider the e†ect of the cluster
mass function, n(M)dM, the number density of clusters as a

function of mass. Theory and observations both strongly
suggest that this is a steeply falling function with mass ;
there are more low-mass clusters than there are high-mass
clusters. Because of this, even if the distribution of observed
lensing masses from the previous sectionP(Mlens oMtrue)were symmetric about the meanÈeven if there were no bias
in the mass estimatorÈit would still be more likely to over-
estimate masses than underestimate them. To explain this in
more concrete terms, consider a cluster with an observed
lensing mass If we consider two values ofMlens \ 1015 M

_
.

the actual cluster mass andM1\ 8.33] 1014 M
_

M2\
(mass ratios of 1.2 and 0.8,1.25] 1015 M

_
Mlens/Mtruerespectively), then even if the probabilities that clusters of

masses and will be observed at lensing massM1 M2 Mlensare the same (as would be the case if our histograms were
unbiased and symmetric), it is still more likely that a given
cluster observed at has mass than simplyMlens M1 M2,because there are more clusters at mass thanM1 M2.Thus, we expect that weak lensing masses for clusters
systematically overestimate the true masses of clusters
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FIG. 7.ÈHistograms of measured within a mean interior density contrast at z\ 1.0. Clusters are ordered by with the massMlens/Mtrue, d6 \ 200, Mtrue,given for each cluster in units of 1015 Lines of sight near the box principal axes, through identiÐed large clusters, or producing mass estimates twice thatM
_

.
of the cluster, are all excluded. The vertical hash mark near the top of each box indicates the location of the mean for that clusterÏs histogram.

within the density contrast of interest. To be fair, this e†ect
should occur with any mass estimator, whether based on
lensing, hydrostatic, or dynamical arguments, since any esti-
mator is bound to have some scatter in its predictions. The
magnitude of the overestimate is dependent on two things :
the width of the distribution which for weakP(Mlens oMtrue),lensing we considered in the previous section ; and the steep-
ness of the mass function at the observed value TheMlens.massive clusters at moderate redshift(M200 ^ 1015 M

_
)

that provide the typical objects for weak lensing analysis lie
on or near the exponential cuto† of the theoretical Press-
Schechter mass function ; the magnitude of these overesti-
mates can be expected to be quite strong.

In Figure 8 we show the likelihood that a cluster at
z\ 0.5, observed to have a lensing mass within a density
contrast of 200 of either or 1015Mlens \ 5 ] 1014 M

_
M

_
,

has an actual mass within a density contrast of 200 equal to
or greater than M. To construct this Ðgure, the theoretical
Press-Schechter mass function for the "CDM model
assumed in this paper was used. Several di†erent curves
relating possible values of the observed mass to the true

mass were considered. For the lensing mass, the curves
shown indicate that it is 100% likely that the actual cluster
mass is greater than half the observed mass ; this merely
reÑects the fact that in constructing we arti-P(Mlens oMtrue),Ðcially truncated the error histograms at asMlens/Mtrue\ 2,
explained earlier. The important point to take from this plot
is that regardless of the magnitude of the dispersion, it is
unlikely that the cluster actually has the observed mass or
greater. Even without a bias, a dispersion of 30% in the
mass ratios indicates that a cluster observed at a mass of
5 ] 1014 is 70% likely to be of lower mass, while aM

_cluster at 1015 is over 75% likely to be of lower mass. The
situation is far worse if the dispersion is larger or if a bias
exists.

6. THE MASS FUNCTION

If there is some dispersion in possible observed masses for
clustersÈthat is, if the mapping from actual mass to
observed mass is not one to oneÈthen there will also be an
e†ect on the observed mass function. The number density of
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FIG. 8.ÈLikelihood that a cluster with an observed lensing mass within of (left) or (right) has an actuald6 \ 200 Mlens \ 5 ] 1014 M
_

Mlens \ 1015 M
_mass within greater than or equal to M, at z\ 0.5. The observed is marked by a dashed line. Considered are six possible PDFs mapping thed6 \ 200 Mlensprobability of Ðnding a particular observed mass given an actual mass. The heavy solid line to the left in each case shows the likelihood curve for the PDF we

derived in Fig. 5. The three dotted curves marked G1, G2, and G3 show the result for Gaussian PDFs in the mass ratio centered on withMlens/Mtrue \ 1,
dispersions of 0.1, 0.2, and 0.3, respectively. The dot-dashed curve marked G3 M shows the result for a Gaussian PDF with a dispersion of 0.3, but with the
mean ratio shifted to 1.3, comparable to that of the PDF in Fig. 5.

clusters of some observed mass will actually be com-Mlensprised of contributions from a range of actual cluster
masses. This can be described by a convolution of the true
mass function with the probability of observing a cluster of
mass at a given mass Mathematically, theMtrue Mlens.abundance of clusters with observed masses in the range

FIG. 9.ÈNumber density of clusters predicted to lie above a given mass
M. The solid line indicates the actual mass function predicted by Press-
Schechter, while the dashed line indicates the abundance as a function of
observed Mlens.

should be given by(Mlens, Mlens ] dMlens)

n(Mlens)dMlens \ dMlens
P
0

=
P(Mlens oMtrue)

] n(Mtrue)dMtrue , (12)

where, as earlier, is the probability that aP(Mlens oMtrue)cluster with an actual mass of will be observed withMtruemass Figure 9 demonstrates the result of this convol-Mlens.ution, using the PDF derived for Figure 5. Here an extra
integral is done, from a given mass to inÐnity, to Ðnd the
number density of clusters above a given mass. Plotted are
both the expectation for the number density above a given
observed mass value (dashed line) and the numberMlensdensity above a given actual mass The Ðgure suggestsMtrue.that lensing observations would indicate 3 times as many
clusters at a mass of 1015 as are actually present. This isM

_signiÐcant, but certainly insufficient to mimic the lack of
strong evolution at the high end of the mass function
argued by, e.g., Bahcall & Fan (1998).

7. DISCUSSION

7.1. Detecting Projection E†ects with
L ine-of-Sight Velocities

One way in which an observer might hope to avoid being
fooled by this sort of projection e†ect is by examining line-
of-sight velocities of galaxies. If a velocity histogram sug-
gests a clump of mass in the foreground or background of
the cluster, an observer could assume that a lensing mass
measurement from this cluster would be corrupted. While
this would not remove the e†ect on mass measurements of
this cluster, it would remove the cluster from consideration,
and thus avoid any false scientiÐc conclusions drawn from
an incorrect mass assigned to this cluster. For instance,
ignoring a mass estimate from a cluster which clearly has a
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strong foreground or background mass concentration
would then reduce the chance of overestimating the abun-
dance of high-mass clusters.

In constructing the histograms shown earlier, we
assumed that an observer would be perfectly able to avoid
such lines of sight when we explicitly excluded lines of sight
which pass through another large cluster in the volume.
Thus, the histograms at present have attempted to correct
for foreground and background contamination by other
objects. However, it is still worth considering whether
galaxy redshifts could help us to exclude cases where no big
objects such as rich clusters ruin our measurement, but
instead a Ðlament is oriented near or across the line of sight.

The simulations used for this project do not model galaxy
formation. Indeed, in the lowest resolution region (outside
the cluster environs, and comprising most of the volume of
the simulation), individual collisionless particles have
masses D6.66] 1011 h~1 so approximating galaxiesM

_
,

by halos is not available to us. Instead, we tie galaxy loca-
tions to the background overdensity Ðeld, and consider two
scenarios : a simple model where galaxies trace the mass
along the line of sight ; and a model where galaxies are
biased tracers of the mass, lying in regions where the mean
local density contrast is above 50.

Figure 10 shows the results of this process. Here we have
taken Ðve lines of sight through Cluster 6, corresponding to

values of 1.0È2.0, which were not excluded inMlens/Mtrue

making the cluster histogram, as no large lumps exist in the
cluster foreground or background. These correspond to the
same lines of sight used in Figure 4. For each, a line-of-sight
velocity histogram was constructed by considering particles
taken from the overall mass distribution and its velocity
Ðeld. Shown within that histogram is a smaller shaded one,
detailing the histogram produced by matter at density con-
trasts of 50 or higher.

The velocity histograms determined by the full mass dis-
tribution show that if galaxies trace the mass, one cannot
generically count on line-of-sight velocities to veto cases
with large errors, even when densely sampled. The last
example shown hereÈa line of sight toward Cluster 6
producing an error in the mass estimate of a factor of 2Èis
driven by comparatively di†use mass extending over a
range of radii in the foreground : a Ðlament of mass. It is not
at all clear that a histogram of galaxy velocities would pick
this up. Note in the line of sight with mass ratio 1.25 shown
here, a mass concentration 50È60 h~1 Mpc in the fore-
ground corresponds to a Ðlament cutting across our line of
sight rather than to any one speciÐc collapsed object.

The situation is even worse if galaxies are expected to lie
preferentially in regions of high overdensity. As noted, the
shaded area indicates a histogram drawn from regions with
overdensity greater than 50 ; the di†erence between this his-
togram and the parent (unshaded) histogram highlights the
di†erence between the expected sort of histograms should

FIG. 10.ÈLine-of-sight velocity histograms for the Ðve lines of sight through Cluster 6 previously examined in Fig. 4 ; numbers in the upper right-hand
corner indicate the mass ratios associated with each line of sight, for the simple projected estimator. Material used in forming the histograms was taken from
a viewing ““ cylinder ÏÏ of radius 3 h~1 Mpc; the space between tick marks in the plot corresponds to 1000 km s~1\ 10 h~1 Mpc, and thus a volume associated
with each tick mark of 283 h~3 Mpc3. The unshaded outline shows the histogram produced by the mass in the line of sight, while the shaded subset of the
histogram is produced by mass at density contrasts above 50.
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galaxies trace the mass directly and should galaxies be
biased toward higher density regions. In the latter case, it is
quite clear that clumps of galaxies in a line-of-sight velocity
diagram cannot be counted upon to screen out any poten-
tially large errors.

7.2. Scale Dependence of Results
In studying the magnitude of this e†ect, we have been

considering matter contained within spheres of radius 128
h~1 Mpc centered on the cluster of interest. Of course, in
the real universe, when observing a cluster along a particu-
lar line of sight, there exists material at distances greater
than 128 h~1 Mpc away from the clusterÈmaterial in the
foreground, between us and the cluster lens, and in the
background between the lens and the source, but farther
away from the cluster than 128 h~1 Mpc. What e†ect
should this material have on the estimated lensing mass?

To examine this, we repeated the procedure used in con-
structing Figure 3 for Cluster 6 several times ; however,
instead of using the full simulation data set (a sphere of
radius 128 h~1 Mpc centered on the cluster), we used data
sets centered on the cluster but cut o† at a di†erent radius
each time. This allows study of the evolution of the histo-
gram as a function of the volume of matter around the
cluster being considered in calculating the e†ect. In particu-
lar, we considered the Ðrst four moments of the histogram
for Cluster 6 at the results of this analysis arez

l
\ 0.5 ;

shown in Figure 11. Each radial point corresponds to
taking a sphere of material of that radius, centered on the
cluster, and using 5000 lines of sight through that sphere to
determine the moments of the distribution of Mlens/Mtrue.The last data points for each moment, at a radius of 128 h~1
Mpc (half the box size), corresponds to the histogram for
Cluster 6 shown in Figure 3. The most striking feature to

FIG. 11.ÈMoments of the distribution of for Cluster 6, as aMlens/Mtruefunction of the outer radius of the particle data set used to calculate the
distribution. The data points showing the moments for the largest radius
correspond to using the full simulation data set, and thus are the moments
of the histogram for Cluster 6 shown in Fig. 3.

note is that the mean value of the histogram is reached at
comparatively small radii for the data set. The mean error is
driven primarily by material within 10È20 Mpc of the
cluster. As the radius of the data set used decreases, the
histogram converges toward that driven by the asymmetry
of the cluster itself. Also, the shape of the histogram appears
to have converged ; the skewness and kurtosis of the histo-
gram for material with 100 h~1 Mpc remains relatively
unchanged after considering the e†ects of material at still
larger radii.

The standard deviation of the histogram, on the other
hand, appears to still be increasing as the e†ect of material
farther and farther away from the cluster is considered. One
plausible interpretation of this result is as follows. When
only the material within a sphere of a given radius is con-
sidered, a line of sight through the cluster will produce some
lensing mass estimate. Considering a slightly larger sphere
of material will slightly change the estimate produced along
each line of sight, by an amount dependent upon the over-
density contained within the small additional segment of
volume that lies along the line of sight. Thus, the new histo-
gram of this larger sphere can be thought of as the histo-
gram describing the smaller sphere convolved with a
function dependent upon the distribution of overdensities
expected in these volumes. Therefore, at a large enough
radius from the cluster, this component should simply be
noise uncorrelated with the cluster itself ; the result is to
broaden the histogram, resulting in an increasing second
moment. This was checked by plotting the mass estimates
arising from the material within a given large radius (e.g.,
123 h~1 Mpc, the second-to-last points in radius on Fig. 11)
with the change in the mass estimate when all the material
(out to 128 h~1 Mpc, the last point in Fig. 11) is used. The
result was no appreciable correlation, with a correlation
coefficient of r \ 0.10.

7.3. Comparison with Other Work
Papers by Cen (1997), Reblinsky & Bartelmann (1999),

and Brainerd et al. (1999) have previously examined the
accuracy of weak lensing mass estimates.

Cen (1997) constructed mock surface-density maps by
simply projecting down the mass in the simulation, sub-
tracting o† a constant background since matter at the back-
ground density does not contribute to the lensing signal. In
the limit of no variation of the lensing kernel in equation (5),
these approaches should be equivalent. Cen reported sub-
stantially smaller positive bias in the lensing mass than we
have seen here, typically of only 5%È10%. On the surface,
this appears to be discrepant with our result.

However, masses compared by Cen were measured
within an aperture of Ðxed size, rather than an aperture
whose size depends on the mass within, as we use here.
Furthermore, the magnitude of the bias seen by Cen
depended strongly on the size of the aperture used, and
increased dramatically between apertures of radii 1 h~1
Mpc (a median value of just under 14%, by eye from
Fig. 19) and 2 h~1 Mpc (approximately 40%). Cen mea-
sured the bias and dispersion of using an aper-Mlens/M200ture for each cluster equal to its three-dimensional value of

and found results substantially similar to those for ar200,
Ðxed aperture of 1 h~1 Mpc. This suggests that 1 h~1 Mpc
is representative of the values for the 50 clusters inr200CenÏs sample, which was taken at z\ 0. The 12 clusters in
our sample represent the high-mass tail of the cluster mass
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function, in a box 8 times as large ; the values of rep-r200resented at z\ 0.5 range from 1.01 to 1.54 h~1 Mpc. The
median value for the bias we obtain using a Ðxed aperture
for each cluster equal to that clusterÏs three-dimensional
value of similar to Cen, is 24%; the median using ar200,Ðxed aperture of 2 h~1 Mpc is 1.56. We believe the di†er-
ence in the magnitude of the bias seen by Cen and ourselves
lies in the di†erent cluster samples usedÈCenÏs sample
running much further down the mass functionÈand also in
sample variance. With regard to the latter, the medians for
the mass ratios obtained from each cluster independently,
using a 2 h~1 Mpc Ðxed aperture, range from 1.38 to 1.85.

We emphasize again that the dispersion in measured
values of the mass is the important quantity from Figure 5,
since any attempt by an estimator to correct for any bias
from projected material must still contend with the variance
in the amount of projected material along di†erent lines of
sight. Figure 19 of Cen (1997) suggests that approximately
6% of his cluster lines of sight have mass ratios Mlens/M200measured within the three-dimensional with valuesr200above 1.58 ; with our smaller sample of clusters of larger
mass, we see 10% of our lines of sight above this value. For
a Ðxed projection aperture of 2 h~1 Mpc, Cen sees 10% of
his cluster observations yielding mass ratios in excess of
approximately 2.0 ; we see 10% lying above 2.14. Within the
limits of sample variance, we do not believe our results on
the dispersion are signiÐcantly di†erent from CenÏs. In any
case, both our work and that of Cen (1997) imply that large
values of the mass ratio are not uncommon.

In Reblinsky & Bartelmann (1999), mock shear maps of
simulated clusters were obtained by Ðrst projecting the
mass into two dimensions to construct the convergence,
then solving the Poisson equation for the two-dimensional
lensing potential (eq. [2]), and Ðnally taking the appropriate
derivatives to Ðnd the complex shear. The tangential shear
was then used to Ðnd the f-parameter using equation (10).
Finally, the system of equations relating (for af(r1, r2)range of values of out to and the appropriate averagesr1 r2)of the convergence i (see eq. [9]) were solved for the mass
proÐle assuming no convergence in the outermost annulus.
These masses were then compared to the three-dimensional
mass, using h~1 Mpc. While on the surfacer3D \ r2\ 1.8
their results appear consistent with oursÈmeans, medians,
and dispersions, which are roughly comparable to those
presented hereÈthe comparison is in fact difficult to make
directly. The mass range of the cluster sample used by
Reblinsky & Bartelmann (1999) lies a factor of 4È10 lower
than that used here. Their positive bias in is driven byMlenstheir lowest mass cluster ; higher mass systems appear to
evidence a trend toward underestimating masses. However,
their setting the e†ective convergence to zero at 1.8 h~1
Mpc can be interpreted as estimating the typical
foreground/background mass contamination and sub-
tracting that o† ; di†erent mass estimators can be expected
to have di†erent means, or degrees of bias. The important
comparison to be made is the dispersion in their mass
ratios, 0.34, which actually exceeds that in our sample and
appears relatively insensitive of the subsample taken. The
apparent trend in their sample of decreasing bias with larger
mass systems is not seen in our sample, although it was seen
in our previous Letter (Metzler et al. 1999). Given the
sample dependence of this trend in our work, and that the

trend seems much less prominent in the data set of
Reblinsky & Bartelmann (1999) when restricted to the
highest mass clusters more akin to our ensemble, the reality
of this trend is unclear.

In Brainerd et al. (1999), shear maps were constructed by
explicit ray tracing through the volume of interest. Esti-
mated lensing mass proÐles were then derived from the
shear maps by assuming that the simulated cluster was a
singular isothermal sphere, in which case the cluster veloc-
ity dispersion (and thus the mass proÐle) is a simple func-
tion of the average shear over an annulus. Brainerd et al.
(1999) found quite good agreement between their estimated
lensing masses and the actual cluster massesÈthe lensing
masses typically being 5%È10% underestimates (see the
outermost circle points in their Fig. 9). However, their shear
maps were constructed using only the matter on their
highest resolution grid within their clustersÏ true, three-
dimensional value of the e†ect of structure at largerr200 ;
distances from the cluster is not considered at all. In other
words, Brainerd et al. (1999) probed primarily the e†ect of
the anisotropic shape of the cluster itself, which we agree (as
noted above) has a small e†ect on mass estimates. However,
their study is not sensitive to the e†ect of the large-scale
structure in which the cluster is embedded, examined here.

8. SUMMARY

In this paper, we have examined how weak lensing mass
estimates of galaxy clusters are a†ected by the large-scale
structure in which the clusters are embedded. We Ðnd that
cluster masses are typically overestimated, with mean errors
of tens of percents for clusters at redshifts z^ 0.5, although
the exact value depends on the mass estimator chosen ; any
mass estimator used on real observations should be cali-
brated through methods such as are described here. These
errors are likely worse for clusters at higher redshift
(z^ 1.0). We also note that as long as there exists a disper-
sion in observed masses possible for a given actual mass
(e.g., along di†erent lines of sight through the cluster), even
an unbiased estimator is likely to produce observed mass
estimates which are systematically higher than the actual
virial masses of clusters ; this is simply because there are
more low-mass clusters which can be erroneously assigned
a high mass than there are high-mass clusters which can be
erroneously assigned a low mass. The magnitude of this
e†ect is crucially dependent on the estimator used and
should be considered carefully when implementing a partic-
ular estimator. Such approaches as simple projection and
aperture densitometry do not appear to perform better than
simple virial estimates based on cluster X-ray temperatures
alone, although temperature-based estimates su†er from
calibration uncertainties that would induce a bias if unre-
solved. The e†ects of large-scale structure examined here
are not typically resolved through the examination of
galaxy redshifts in the viewing Ðeld.
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