37,801 research outputs found

    Orbits and origins of the young stars in the central parsec of the galaxy

    Get PDF
    We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within a parsec of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas yr^(−1) (3 km s^(−1) ), which is ≳7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas yr^(−2) (7 km s^(−1) yr^(−1) ). These measurements, along with stellar line-of-sight velocities from the literature, constrain the true orbit of each individual star and allow us to directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one disk of young stars using a method that is capable of detecting disks containing at least 7 stars. The detected disk contains 50% (38 of 73) of the young stars, is inclined by ~115° from the plane of the sky, and is oriented at a position angle of ∼100° East of North. The on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger radii as ∝ r^(−2). The disk has an out-of-the-disk velocity dispersion of 28±6 km s^(−1) , which corresponds to a half-opening angle of 7°±2° , and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple thin circular disk

    Testing for periodicities in near-IR light curves of Sgr A

    Get PDF
    We present the results of near-infrared (2 μm) monitoring of Sgr A*-IR with 1 minute time sampling using laser guide star adaptive optics (LGS AO) system at the Keck II telescope. Sgr A*-IR was observed continuously for up to three hours on each of seven nights, between 2006 May and 2007 August. Sgr A*-IR is detected at all times and is continuously variable. These observations allow us to investigate Nyquist sampled periods ranging from about 2 minutes to an hour. Of particular interest are periods of ~20 min, which corresponds to a quasi-periodic (QPO) signal claimed based upon previous near-infrared observations and interpreted as the orbit of a ’hot spot’ at or near the last stable orbit of a spinning black hole. We investigate these claims by comparing periodograms of the light curves with models for red noise and find no significant deviations that would indicate QPO activity at any time scale probed in the study. We find that the variability of Sgr A* is consistent with a model based on correlated noise with a power spectrum having a frequency dependence of ~ f^(2.5), consistent with that observed in AGNs. Furthermore, the periodograms show power down to the minimum sampling time of 2 min, well below the period of the last stable orbit of a maximally spinning black hole, indicating that the Sgr A*-IR light curves observed in this study is unlikely to be from the Keplerian motion of a single ’hot spot’ of orbiting plasma

    Annular electroconvection with shear

    Full text link
    We report experiments on convection driven by a radial electrical force in suspended annular smectic A liquid crystal films. In the absence of an externally imposed azimuthal shear, a stationary one-dimensional (1D) pattern consisting of symmetric vortex pairs is formed via a supercritical transition at the onset of convection. Shearing reduces the symmetries of the base state and produces a traveling 1D pattern whose basic periodic unit is a pair of asymmetric vortices. For a sufficiently large shear, the primary bifurcation changes from supercritical to subcritical. We describe measurements of the resulting hysteresis as a function of the shear at radius ratio η0.8\eta \sim 0.8. This simple pattern forming system has an unusual combination of symmetries and control parameters and should be amenable to quantitative theoretical analysis.Comment: 12 preprint pages, 3 figures in 2 parts each. For more info, see http://mobydick.physics.utoronto.c

    Comparisons of various configurations of the edge delamination test for interlaminar fracture toughness

    Get PDF
    Various configurations of Edge Delamination Tension (EDT) test specimens, of both brittle (T300/5208) and toughened-matrix (T300/BP907) graphite reinforced composite laminates, were manufactured and tested. The mixed-mode interlaminar fracture toughness, G sub C, was measured using (30/30 sub 2/30/90 sub N)sub s, n=1 or 2, (35/-35/0/90) sub s and (35/0/-35/90) sub s layups designed to delaminate at low tensile strains. Laminates were made without inserts so that delaminations would form naturally between the central 90 deg plies and the adjacent angle plies. Laminates were also made with Teflon inserts implanted between the 90 deg plies and the adjacent angle (theta) plies at the straight edge to obtain a planar fracture surface. In addition, interlaminar tension fracture toughness, GIc, was measured from laminates with the same layup but with inserts in the midplane, between the central 90 deg plies, at the straight edge. All of the EDT configurations were useful for ranking the delamination resistance of composites with different matrix resins. Furthermore, the variety of layups and configurations available yield interlaminar fracture toughness measurements needed to generate delamination failure criteria. The influence of insert thickness and location, and coupon size on G sub c values were evaluated

    The XMM-Newton view of the central degrees of the Milky Way

    Get PDF
    The deepest XMM-Newton mosaic map of the central 1.5 deg of the Galaxy is presented, including a total of about 1.5 Ms of EPIC-pn cleaned exposures in the central 15" and about 200 ks outside. This compendium presents broad-band X-ray continuum maps, soft X-ray intensity maps, a decomposition into spectral components and a comparison of the X-ray maps with emission at other wavelengths. Newly-discovered extended features, such as supernova remnants (SNRs), superbubbles and X-ray filaments are reported. We provide an atlas of extended features within +-1 degree of Sgr A*. We discover the presence of a coherent X-ray emitting region peaking around G0.1-0.1 and surrounded by the ring of cold, mid-IR-emitting material known from previous work as the "Radio Arc Bubble" and with the addition of the X-ray data now appears to be a candidate superbubble. Sgr A's bipolar lobes show sharp edges, suggesting that they could be the remnant, collimated by the circumnuclear disc, of a SN explosion that created the recently discovered magnetar, SGR J1745-2900. Soft X-ray features, most probably from SNRs, are observed to fill holes in the dust distribution, and to indicate a direct interaction between SN explosions and Galactic center (GC) molecular clouds. We also discover warm plasma at high Galactic latitude, showing a sharp edge to its distribution that correlates with the location of known radio/mid-IR features such as the "GC Lobe". These features might be associated with an inhomogeneous hot "atmosphere" over the GC, perhaps fed by continuous or episodic outflows of mass and energy from the GC region.Comment: MNRAS published online. See www.mpe.mpg.de/heg/gc/ for a higher resolution version of the figure

    A Catalog of Diffuse X-ray-Emitting Features within 20 pc of Sgr A*: Twenty Pulsar Wind Nebulae?

    Full text link
    We present a catalog of 34 diffuse features identified in X-ray images of the Galactic center taken with the Chandra X-ray Observatory. Several of the features have been discussed in the literature previously, including 7 that are associated with a complex of molecular clouds that exhibits fluorescent line emission, 4 that are superimposed on the supernova remnant Sgr A East, 2 that are coincident with radio features that are thought to be the shell of another supernova remnant, and one that is thought to be a pulsar wind nebula only a few arcseconds in projection from Sgr A*. However, this leaves 20 features that have not been reported previously. Based on the weakness of iron emission in their spectra, we propose that most of them are non-thermal. One long, narrow feature points toward Sgr A*, and so we propose that this feature is a jet of synchrotron-emitting particles ejected from the supermassive black hole. For the others, we show that their sizes (0.1-2 pc in length for D=8 kpc), X-ray luminosities (between 10^32 and 10^34 erg/s, 2-8 keV), and spectra (power laws with Gamma=1-3) are consistent with those of pulsar wind nebulae. Based on the star formation rate at the Galactic center, we expect that ~20 pulsars have formed in the last 300 kyr, and could be producing pulsar wind nebulae. Only one of the 19 candidate pulsar wind nebulae is securely detected in an archival radio image of the Galactic center; the remainder have upper limits corresponding to L_R<la10^31 erg/s. These radio limits do not strongly constrain their natures, which underscores the need for further multi- wavelength studies of this unprecedented sample of Galactic X-ray emitting structures.Comment: 14 pages, 8 figures, 5 in color. Submitted to Ap

    The Shortest Known Period Star Orbiting our Galaxy's Supermassive Black Hole

    Get PDF
    Stars with short orbital periods at the center of our galaxy offer a powerful and unique probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the Galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of stars with full phase coverage and periods less than 20 years. It thereby provides the opportunity with future measurements to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of General Relativity in an unexplored regime.Comment: Science, in press (published Oct 5, 2012). See Science Online for the Supplementary Material, or here: http://www.astro.ucla.edu/~ghezgroup/gc/research/S02_S0102_orbits.htm
    corecore