4,693 research outputs found

    COMPARISON OF EXTRADURAL ADMINISTRATION OF SUFENTANIL, MORPHINE AND SUFENTANIL-MORPHINE COMBINATION AFTER CAESAREAN SECTION

    Get PDF
    We have studied postoperative analgesia and unwanted side effects of a single dose of a mixture of morphine and sufentanil administered extradurally with the effects produced by extradural injection of each opioid alone in 64 patients after Caesarean delivery. The patients were allocated randomly to receive morphine 4 mg (n = 21), sufentanil 50 μg (n = 22) or morphine 2 mg with sufentanil 25 μg (n = 21) via an extradural catheter in a double-blind design. Intensity of pain was measured using a linear visual analogue scale. Compared with the effect produced by morphine alone, the morphine-sufentanil combination produced more rapid onset of pain relief (19 (SD 5) min vs 79 (23) min for a 75% reduction of pain; P < 0.01), whereas the duration and quality of analgesia assessed during 12 h was similar for these two groups. In contrast, patients receiving sufentanil alone required significantly more supplementary analgesia 4 h after administration than with morphine alone or morphine combined with sufentanil. There were no significant changes in cardiorespiratory variables in any group. Side effects consisted mainly of pruritus and nausea and did not differ between groups, with the exception of early and transient dizziness which was observed only in patients given sufentanil either alone or in combination with morphine. We conclude that a single extradural injection of morphine and sufentanil combines the short onset time produced by sufentanil and the long duration of analgesia attributable to morphine, thus providing excellent and prolonged analgesia after Caesarean deliver

    Affine Subspace Representation for Feature Description

    Full text link
    This paper proposes a novel Affine Subspace Representation (ASR) descriptor to deal with affine distortions induced by viewpoint changes. Unlike the traditional local descriptors such as SIFT, ASR inherently encodes local information of multi-view patches, making it robust to affine distortions while maintaining a high discriminative ability. To this end, PCA is used to represent affine-warped patches as PCA-patch vectors for its compactness and efficiency. Then according to the subspace assumption, which implies that the PCA-patch vectors of various affine-warped patches of the same keypoint can be represented by a low-dimensional linear subspace, the ASR descriptor is obtained by using a simple subspace-to-point mapping. Such a linear subspace representation could accurately capture the underlying information of a keypoint (local structure) under multiple views without sacrificing its distinctiveness. To accelerate the computation of ASR descriptor, a fast approximate algorithm is proposed by moving the most computational part (ie, warp patch under various affine transformations) to an offline training stage. Experimental results show that ASR is not only better than the state-of-the-art descriptors under various image transformations, but also performs well without a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio

    Extrapolations of Lattice Meson Form Factors

    Full text link
    We use chiral perturbation theory to study the extrapolations necessary to make physical predictions from lattice QCD data for the electromagnetic form factors of pseudoscalar mesons. We focus on the quark mass, momentum, lattice spacing, and volume dependence and apply our results to simulations employing mixed actions of Ginsparg-Wilson valence quarks and staggered sea quarks. To determine charge radii at quark masses on the lattices currently used, we find that all extrapolations except the one to infinite volume make significant contributions to the systematic error.Comment: 14pp, discussion and Ref. added for disconnected diagram

    Boron depletion in 9 to 15 M(circle dot) stars with rotation

    Get PDF
    The treatment of mixing is still one of the major uncertainties in stellar evolution models. One open question is how well the prescriptions for rotational mixing describe the real effects. We tested the mixing prescriptions included in the Geneva stellar evolution code (GENEC) by following the evolution of surface abundances of light isotopes in massive stars, such as boron and nitrogen. We followed 9, 12 and 15 M(O) models with rotation from the zero age main sequence up to the end of He burning. The calculations show the expected behaviour with faster depletion of boton for faster rotating stars and more massive stars. The mixing at the surface is more efficient, than predicted by prescriptions used in other codes and reproduces the majority of observations very well However two observed stars with strong boron depletion but, no nitrogen enhancement still can not be explained and let the question open whether additional mixing processes are acting in these massive star

    Current status of cardiac MRI in small animals

    Get PDF
    Cardiac magnetic resonance imaging (MRI) on small animals is possible but remains challenging and not well standardized. This publication aims to provide an overview of the current techniques, applications and challenges of cardiac MRI in small animals for researchers interested in moving into this field. Solutions have been developed to obtain a reliable cardiac trigger in both the rat and the mouse. Techniques to measure ventricular function and mass have been well validated and are used by several research groups. More advanced techniques like perfusion imaging, delayed enhancement or tag imaging are emerging. Regarding cardiac applications, not only coronary ischemic disease but several other pathologies or conditions including cardiopathies in transgenic animals have already benefited from these new developments. Therefore, cardiac MRI has a bright future for research in small animal

    The Kaon B-parameter from Quenched Domain-Wall QCD

    Full text link
    We present numerical results for the kaon B-parameter, B_K, determined in the quenched approximation of lattice QCD. Our simulations are performed using domain-wall fermions and the renormalization group improved, DBW2 gauge action which combine to give quarks with good chiral symmetry at finite lattice spacing. Operators are renormalized non-perturbatively using the RI/MOM scheme. We study scaling by performing the simulation on two different lattices with a^{-1} = 1.982(30) and 2.914(54) GeV. We combine this quenched scaling study with an earlier calculation of B_K using two flavors of dynamical, domain-wall quarks at a single lattice spacing to obtain B_K(MS,NDR,mu=2GeV)=0.563(21)(39)(30), were the first error is statistical, the second systematic (without quenching errors) and the third estimates the error due to quenching.Comment: 77 pages, 44 figures, to be published in Phys. Rev.

    The underlying physical meaning of the νmaxνc\nu_{\rm max}-\nu_{\rm c} relation

    Full text link
    Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum (νmax\nu_{\rm max}) of solar-like oscillations and the cut-off frequency (νc\nu_{\rm c}). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called \emph{plateau} of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between νmax\nu_{\rm max} and νc\nu_{\rm c}, with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter.Comment: 8 pages, 11 figures. Accepted in A&

    In-Situ Alumina/Aluminate Platelet Composites

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66294/1/j.1151-2916.1992.tb05623.x.pd
    corecore