54 research outputs found

    Land‐use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany

    Get PDF
    Evidence from experimental and established grasslands indicates that plant biodiversity can modify the water cycle. One suspected mechanism behind this is a higher infiltration capacity (νB_{B}) and hydraulic conductivity (K) of the soil on species-rich grasslands. However, in established and agriculturally managed grasslands, biodiversity effects cannot be studied independent of land-use effects. Therefore, we investigated in established grassland systems how land-use intensity and associated biodiversity of plants and soil animals affect νB and K at and close to saturation. On 50 grassland plots along a land-use intensity gradient in the Biodiversity Exploratory Schwäbische Alb, Germany, we measured νB with a hood infiltrometer at several matrix potentials and calculated the saturated and unsaturated K. We statistically analysed the relationship between νB_{B} or K and land-use information (e.g., fertilising intensity), abiotic (e.g., soil texture) and biotic data (e.g., plant species richness, earthworm abundance). Land-use intensity decreased and plant species richness increased νB_{B} and K, while the direction of the effects of soil animals was inconsistent. The effect of land-use intensity on νB_{B} and K was mainly attributable to its negative effect on plant species richness. Our results demonstrate that plant species richness was a better predictor of νB_{B} and K at and close to saturation than land-use intensity or soil physical properties in the established grassland systems of the Schwäbische Alb

    Simple model systems: a challenge for Alzheimer's disease

    Get PDF
    The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds

    Smoking: Taxing Health and Social Security

    Full text link
    While the health risks associated with smoking are well known, the impact on income distributions is not. This paper extends the literature by examining the distributional effects of a behavioral choice, in this case smoking, on net marginal Social Security tax rates (NMSSTR). The results show that smokers, as a result of shorter life expectancies, incur a higher NMSSTR than nonsmokers. In addition, as low-earnings workers have a higher smoking prevalence than high-earnings workers, smoking works to widen the income distribution. This higher tax rate could have implications for both labor supply behavior and Social Security system funding

    Sedimentation Behavior of Fibrinogen from Normal and Bleeder Swine

    No full text

    Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of pseudomonas aeruginosa

    No full text
    &lt;p&gt;Addressing the functionality of predicted genes remains an enormous challenge in the postgenomic era. A prime example of genes lacking functional assignments are the poorly conserved, early expressed genes of lytic bacteriophages, whose products are involved in the subversion of the host metabolism. In this study, we focused on the composition of important macromolecular complexes of Pseudomonas aeruginosa involved in transcription, DNA replication, fatty acid biosynthesis, RNA regulation, energy metabolism, and cell division during infection with members of seven distinct clades of lytic phages. Using affinity purifications of these host protein complexes coupled to mass spectrometric analyses, 37 host complex-associated phage proteins could be identified. Importantly, eight of these show an inhibitory effect on bacterial growth upon episomal expression, suggesting that these phage proteins are potentially involved in hijacking the host complexes. Using complementary protein-protein interaction assays, we further mapped the inhibitory interaction of gp12 of phage 14-1 to the alpha subunit of the RNA polymerase. Together, our data demonstrate the powerful use of interactomics to unravel the biological role of hypothetical phage proteins, which constitute an enormous untapped source of novel antibacterial proteins. (Data are available via ProteomeXchange with identifier PXD001199.)&lt;/p&gt;</p
    corecore