3,148 research outputs found

    Plans and progress towards tuning the ATF2 final focus system to obtain a 35 nm IP waist

    No full text
    FR5PFP021International audienceUsing a new extraction line currently being commissioned, the ATF2 experiment plans to test a novel compact final focus optics design using a local chromaticity correction scheme, such as could be used in future linear colliders*. Using a 1.3 GeV beam of ∼30nm normalised vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical IP waist of 35nm. We discuss our planned strategy, implementation details and early experimental results for tuning the ATF2 beam to meet the primary goal. These optics require uniquely tight tolerances on some magnet strengths and positions, we discuss efforts to re-match the optics to meet these requirements using high-precision measurements of key magnet elements. We simulated in detail the tuning procedure using several algorithms and different code implementations for comparison from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within 10% of the design optics value in at least 90% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks

    Dopamine D 4 Receptor-Deficient Mice Display Cortical Hyperexcitability

    Get PDF
    The dopamine D(4) receptor (D(4)R) is predominantly expressed in the frontal cortex (FC), a brain region that receives dense input from midbrain dopamine (DA) neurons and is associated with cognitive and emotional processes. However, the physiological significance of this dopamine receptor subtype has been difficult to explore because of the slow development of D(4)R agonists and antagonists the selectivity and efficacy of which have been rigorously demonstrated in vivo. We have attempted to overcome this limitation by taking a multidimensional approach to the characterization of mice completely deficient in this receptor subtype. Electrophysiological current and voltage-clamp recordings were performed in cortical pyramidal neurons from wild-type and D(4)R-deficient mice. The frequency of spontaneous synaptic activity and the frequency and duration of paroxysmal discharges induced by epileptogenic agents were increased in mutant mice. Enhanced synaptic activity was also observed in brain slices of wild-type mice incubated in the presence of the selective D(4)R antagonist PNU-101387G. Consistent with greater electrophysiological activity, nerve terminal glutamate density associated with asymmetrical synaptic contacts within layer VI of the motor cortex was reduced in mutant neurons. Taken together, these results suggest that the D(4)R can function as an inhibitory modulator of glutamate activity in the FC.Fil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cepeda, Carlos. University of California at Los Angeles; Estados UnidosFil: Hurst, Raymond S.. University of California at Los Angeles; Estados UnidosFil: Flores Hernandez, Jorge. University of California at Los Angeles; Estados UnidosFil: Ariano, Marjorie A.. The Chicago Medical School; Estados UnidosFil: Falzone, Tomas Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Kozell, Laura B.. Oregon Health Sciences University; Estados UnidosFil: Meshul, Charles K.. Oregon Health Sciences University; Estados UnidosFil: Bunzow, James R.. Oregon Health Sciences University; Estados UnidosFil: Low, Malcolm J.. Oregon Health Sciences University; Estados UnidosFil: Levine, Michael S.. University of California at Los Angeles; Estados UnidosFil: Grandy, David K.. Oregon Health Sciences University; Estados Unido

    Dynamic changes of left ventricular performance and left atrial volume induced by the mueller maneuver in healthy young adults and implications for obstructive sleep apnea, atrial fibrillation, and heart failure.

    Get PDF
    Using the Mueller maneuver (MM) to simulate obstructive sleep apnea (OSA), our aim was to investigate acute changes in left-sided cardiac morphologic characteristics and function which might develop with apneas occurring during sleep. Strong evidence supports a relation between OSA and both atrial fibrillation and heart failure. However, acute effects of airway obstruction on cardiac structure and function have not been well defined. In addition, it is unclear how OSA might contribute to the development of atrial fibrillation and heart failure. Echocardiography was used in healthy young adults to measure various parameters of cardiac structure and function. Subjects were studied at baseline, during, and immediately after performance of the MM and after a 10-minute recovery. Continuous heart rate, blood pressure, and pulse oximetry measurements were made. During the MM, left atrial (LA) volume index markedly decreased. Left ventricular (LV) end-systolic dimension increased in association with a decrease in LV ejection fraction. On release of the maneuver, there was a compensatory increase in blood flow to the left side of the heart, with stroke volume, ejection fraction, and cardiac output exceeding baseline. After 10 minutes of recovery, all parameters returned to baseline. In conclusion, sudden imposition of severe negative intrathoracic pressure led to an abrupt decrease in LA volume and a decrease in LV systolic performance. These changes reflected an increase in LV afterload. Repeated swings in afterload burden and chamber volumes may have implications for the future development of atrial fibrillation and heart failure

    Restructuring of colloidal aggregates in shear flow: Coupling interparticle contact models with Stokesian dynamics

    Full text link
    A method to couple interparticle contact models with Stokesian dynamics (SD) is introduced to simulate colloidal aggregates under flow conditions. The contact model mimics both the elastic and plastic behavior of the cohesive connections between particles within clusters. Owing to this, clusters can maintain their structures under low stress while restructuring or even breakage may occur under sufficiently high stress conditions. SD is an efficient method to deal with the long-ranged and many-body nature of hydrodynamic interactions for low Reynolds number flows. By using such a coupled model, the restructuring of colloidal aggregates under stepwise increasing shear flows was studied. Irreversible compaction occurs due to the increase of hydrodynamic stress on clusters. Results show that the greater part of the fractal clusters are compacted to rod-shaped packed structures, while the others show isotropic compaction.Comment: A simulation movie be found at http://www-levich.engr.ccny.cuny.edu/~seto/sites/colloidal_aggregates_shearflow.htm

    Many-body Effects in Angle-resolved Photoemission: Quasiparticle Energy and Lifetime of a Mo(110) Surface State

    Full text link
    In a high-resolution photoemission study of a Mo(110) surface state various contributions to the measured width and energy of the quasiparticle peak are investigated. Electron-phonon coupling, electron-electron interactions and scattering from defects are all identified mechanisms responsible for the finite lifetime of a valence photo-hole. The electron-phonon induced mass enhancement and rapid change of the photo-hole lifetime near the Fermi level are observed for the first time.Comment: RevTEX, 4 pages, 4 figures, to be published in PR

    S_3-flavour symmetry as realized in lepton flavour violating processes

    Full text link
    A variety of lepton flavour violating effects related to the recent discovery of neutrino oscillations and mixings is here systematically discussed in terms of an S_3-flavour permutational symmetry. After a brief review of some relevant results on lepton masses and mixings, that had been derived in the framework of a Minimal S_3-Invariant Extension of the Standard Model, we derive explicit analytical expressions for the matrices of the Yukawa couplings and compute the branching ratios of some selected flavour changing neutral current (FCNC) processes, as well as, the contribution of the exchange of neutral flavour changing scalars to the anomaly of the muon's magnetic moment as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders of magnitude. The contribution of FCNC to the anomaly of the muon's magnetic moment is small but non-negligible.Comment: 23 pages, one figure. To appear in J. Phys A: Mathematical and Theoretical (SPE QTS5

    Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair

    Get PDF
    Members of the galectin family of endogenous lectins are potent adhesion/growth-regulatory effectors. Their multi-functionality opens possibilities for their use in bioapplications. We studied whether human galectins induce the conversion of human dermal fibroblasts into myofibroblasts (MFBs) and the production of a bioactive extracellular matrix scaffold is suitable for cell culture. Testing a panel of galectins of all three subgroups, including natural and engineered variants, we detected activity for the proto-type galectin-1 and galectin-7, the chimera-type galectin-3 and the tandem-repeat-type galectin-4. The activity of galectin-1 required the integrity of the carbohydrate recognition domain. It was independent of the presence of TGF-beta 1, but it yielded an additive effect. The resulting MFBs, relevant, for example, for tumor progression, generated a matrix scaffold rich in fibronectin and galectin-1 that supported keratinocyte culture without feeder cells. Of note, keratinocytes cultured on this substratum presented a stem-like cell phenotype with small size and keratin-19 expression. In vivo in rats, galectin-1 had a positive effect on skin wound closure 21 days after surgery. In conclusion, we describe the differential potential of certain human galectins to induce the conversion of dermal fibroblasts into MFBs and the generation of a bioactive cell culture substratum. Copyright (C) 2011 S. Karger AG, Base

    An expanded LUXendin color palette for GLP1R detection and visualization in vitro and in vivo

    Get PDF
    The glucagon-like peptide-1 receptor (GLP1R) is expressed in peripheral tissues and the brain, where it exerts pleiotropic actions on metabolic and inflammatory processes. Detection and visualization of GLP1R remains challenging, partly due to a lack of validated reagents. Previously, we generated LUXendins, antagonistic red and far-red fluorescent probes for specific labeling of GLP1R in live and fixed cells/tissue. We now extend this concept to the green and near-infrared color ranges by synthesizing and testing LUXendin492, LUXendin551, LUXendin615 and LUXendin762. All four probes brightly and specifically label GLP1R in cells and pancreatic islets. Further, LUXendin551 acts as chemical beta cell reporter in preclinical rodent models, while LUXendin762 allows non-invasive imaging, highlighting differentially-accessible GLP1R populations. We thus expand the color palette of LUXendins to seven different spectra, opening up a range of experiments using widefield microscopy available in most labs through super-resolution imaging and whole animal imaging. With this, we expect that LUXendins will continue to generate novel and specific insight into GLP1R biology
    corecore