471 research outputs found
Dimensional reduction by pressure in the magnetic framework material CuF(DO)pyz: from spin-wave to spinon excitations
Metal organic magnets have enormous potential to host a variety of electronic
and magnetic phases that originate from a strong interplay between the spin,
orbital and lattice degrees of freedom. We control this interplay in the
quantum magnet CuF(DO)pyz by using high pressure to drive the
system through a structural and magnetic phase transition. Using neutron
scattering, we show that the low pressure state, which hosts a two-dimensional
square lattice with spin-wave excitations and a dominant exchange coupling of
0.89 meV, transforms at high pressure into a one-dimensional spin-chain
hallmarked by a spinon continuum and a reduced exchange interaction of 0.43
meV. This direct microscopic observation of a magnetic dimensional crossover as
a function of pressure opens up new possibilities for studying the evolution of
fractionalised excitations in low dimensional quantum magnets and eventually
pressure-controlled metal--insulator transitions
Neutron scattering study of the field-dependent ground state and the spin dynamics in S=1/2 NH4CuCl3
Elastic and inelastic neutron scattering experiments have been performed on the dimer spin system NH4CuCl3, which shows plateaus in the magnetization curve at m=1/4 and m=3/4 of the saturation value. Two structural phase transitions at T1â156ââK and at T2=70ââK lead to a doubling of the crystallographic unit cell along the b direction and as a consequence a segregation into different dimer subsystems. Long-range magnetic ordering is reported below TN=1.3ââK. The magnetic field dependence of the excitation spectrum identifies successive quantum phase transitions of the dimer subsystems as the driving mechanism for the unconventional magnetization process in agreement with a recent theoretical model
Quantum and classical criticality in a dimerized quantum antiferromagnet
A quantum critical point (QCP) is a singularity in the phase diagram arising
due to quantum mechanical fluctuations. The exotic properties of some of the
most enigmatic physical systems, including unconventional metals and
superconductors, quantum magnets, and ultracold atomic condensates, have been
related to the importance of the critical quantum and thermal fluctuations near
such a point. However, direct and continuous control of these fluctuations has
been difficult to realize, and complete thermodynamic and spectroscopic
information is required to disentangle the effects of quantum and classical
physics around a QCP. Here we achieve this control in a high-pressure,
high-resolution neutron scattering experiment on the quantum dimer material
TlCuCl3. By measuring the magnetic excitation spectrum across the entire
quantum critical phase diagram, we illustrate the similarities between quantum
and thermal melting of magnetic order. We prove the critical nature of the
unconventional longitudinal ("Higgs") mode of the ordered phase by damping it
thermally. We demonstrate the development of two types of criticality, quantum
and classical, and use their static and dynamic scaling properties to conclude
that quantum and thermal fluctuations can behave largely independently near a
QCP.Comment: 6 pages, 4 figures. Original version, published version available
from Nature Physics websit
Quantum Statistics of Interacting Dimer Spin Systems
The compound TlCuCl3 represents a model system of dimerized quantum spins
with strong interdimer interactions. We investigate the triplet dispersion as a
function of temperature by inelastic neutron scattering experiments on single
crystals. By comparison with a number of theoretical approaches we demonstrate
that the description of Troyer, Tsunetsugu, and Wuertz [Phys. Rev. B 50, 13515
(1994)] provides an appropriate quantum statistical model for dimer spin
systems at finite temperatures, where many-body correlations become
particularly important.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
Spinon localization in the heat transport of the spin-1/2 ladder compound (CHN)CuBr
We present experiments on the magnetic field-dependent thermal transport in
the spin-1/2 ladder system (CHN)CuBr. The thermal
conductivity is only weakly affected by the field-induced
transitions between the gapless Luttinger-liquid state realized for and the gapped states, suggesting the absence of a direct
contribution of the spin excitations to the heat transport. We observe,
however, that the thermal conductivity is strongly suppressed by the magnetic
field deeply within the Luttinger-liquid state. These surprising observations
are discussed in terms of localization of spinons within finite ladder segments
and spinon-phonon umklapp scattering of the predominantly phononic heat
transport.Comment: 4 pages, 3 figure
Microscopic model for the magnetization plateaus in NH4CuCl3
A simple model consisting of three distinct dimer sublattices is proposed to
describe the magnetism of NH4CuCl3. It explains the occurrence of magnetization
plateaus only at 1/4 and 3/4 of the saturation magnetization. The field
dependence of the excitation modes observed by ESR measurements is also
explained by the model. The model predicts that the magnetization plateaus
should disappear under high pressure.Comment: 4 pages, 5 figures, REVTeX
Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs
The recent discovery of pressure induced superconductivity in the binary
helimagnet CrAs has attracted much attention. How superconductivity emerges
from the magnetic state and what is the mechanism of the superconducting
pairing are two important issues which need to be resolved. In the present
work, the suppression of magnetism and the occurrence of superconductivity in
CrAs as a function of pressure () were studied by means of muon spin
rotation. The magnetism remains bulk up to ~kbar while its volume
fraction gradually decreases with increasing pressure until it vanishes at
7~kbar. At 3.5 kbar superconductivity abruptly appears with its
maximum ~K which decreases upon increasing the pressure. In the
intermediate pressure region (~kbar) the
superconducting and the magnetic volume fractions are spatially phase separated
and compete for phase volume. Our results indicate that the less conductive
magnetic phase provides additional carriers (doping) to the superconducting
parts of the CrAs sample thus leading to an increase of the transition
temperature () and of the superfluid density (). A scaling of
with as well as the phase separation between magnetism and
superconductivity point to a conventional mechanism of the Cooper-pairing in
CrAs.Comment: 9 pages, 8 figure
Role of multiple subband renormalization in the electronic transport of correlated oxide superlattices
Metallic behavior of band-insulator/ Mott-insulator interfaces was observed
in artificial perovskite superlattices such as in nanoscale SrTiO3/LaTiO3
multilayers. Applying a semiclassical perspective to the parallel electronic
transport we identify two major ingredients relevant for such systems: i) the
quantum confinement of the conduction electrons (superlattice modulation) leads
to a complex, quasi-two dimensional subband structure with both hole- and
electron-like Fermi surfaces. ii) strong electron-electron interaction requires
a substantial renormalization of the quasi-particle dispersion. We characterize
this renormalization by two sets of parameters, namely, the quasi-particle
weight and the induced particle-hole asymmetry of each partially filled
subband. In our study, the quasi-particle dispersion is calculated
self-consistently as function of microscopic parameters using the slave-boson
mean-field approximation introduced by Kotliar and Ruckenstein. We discuss the
consequences of strong local correlations on the normal-state free-carrier
response in the optical conductivity and on the thermoelectric effects.Comment: 11 pages, 4 figure
Thermodynamics of the Spin Luttinger-Liquid in a Model Ladder Material
The phase diagram in temperature and magnetic field of the metal-organic,
two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the
specific heat and the magnetocaloric effect. We demonstrate the presence of an
extended spin Luttinger-liquid phase between two field-induced quantum critical
points and over a broad range of temperature. Based on an ideal spin-ladder
Hamiltonian, comprehensive numerical modelling of the ladder specific heat
yields excellent quantitative agreement with the experimental data across the
complete phase diagram.Comment: 4 pages, 4 figures, updated refs and minor changes to the text,
version accepted for publication in Phys. Rev. Let
- âŠ