770 research outputs found
Structural origins of electronic conduction in amorphous copper-doped alumina
We perform an {\it ab initio} modeling of amorphous copper-doped alumina
(a-AlO:Cu), a prospective memory material based on resistance
switching, and study the structural origin of electronic conduction in this
material. We generate molecular dynamics based models of a-AlO:Cu at
various Cu-concentrations and study the structural, electronic and vibrational
properties as a function of Cu-concentration. Cu atoms show a strong tendency
to cluster in the alumina host, and metallize the system by filling the band
gap uniformly for higher Cu-concentrations. We also study thermal fluctuations
of the HOMO-LUMO energy splitting and observe the time evolution of the size of
the band gap, which can be expected to have an important impact on the
conductivity. We perform a numerical computation of conduction pathways, and
show its explicit dependence on Cu connectivity in the host. We present an
analysis of ion dynamics and structural aspects of localization of classical
normal modes in our models
Effect of Sucrose and Growth Regulator's Level on Ginger Micropropagation
Ginger is most important cash crop of the hilly region of Nepal. However, availability of disease free planting material (rhizome) is the major problem faced by Nepalese farmers. Tissue culture is the only option to produce disease free rhizome of ginger. Suitable culture media combination is most important for the production of planting material in ginger through tissue culture. Therefore, effect of different level of sucrose and growth regulators on micro-propagation of ginger was studied using local collection ‘Kaski Local'. Early stage bud was used as explant. MS basal media with different level of sucrose and growth regulators was used as tissue culture media. 30 g/L sucrose, 30 g/L sucrose+5mg/L BA, 30 g/L sucrose+5 mg/L BA+0.5 mg/L NAA, 60 g/L sucrose+5mg/L BA, 60 g/L sucrose+5 mg/L BA+0.5mg/L NAA, 90 g/L sucrose+5 mg/L BA was used in this study. The explants were surface sterilized, cultured and incubated at 25±2°C, 90-95% relative humidity and 14:10 hours light:dark photoperiod for 8 weeks. Increased level of the sucrose increased the rhizome weight, however, addition of NAA produced more positive effect for this. MS basal media with 60 g/L sucrose+5 mg/L BA+0.5 mg/L NAA produced higher rhizome weight.Journal of Nepal Agricultural Research Council Vol.3 2017: 45-4
White Paper: Shifting the goal post - from high impact journals to high impact data
The purpose of this white paper is to provide an overview of the ongoing initiatives at center level to respond to changing public expectations and to the challenge of improving the conduct of science by making research data widely available. We also attempt to provide a framework for implementing open access for research data to maximize CGIAR’s impact on development. The remainder of this paper proceeds as follows; firstly a summary of the diversity of research data produced by the centers is given, followed by an overview of the existing infrastructure for data management for each Center. Secondly, some of the limitations and barriers faced by the centers in their process to mainstream research data publishing are addressed. The paper concludes with recommendations for how these limitations and barriers can be tackled
High Precision Detection of Change in Intermediate Range Order of Amorphous Zirconia-Doped Tantala Thin Films Due to Annealing
Understanding the local atomic order in amorphous thin film coatings and how it relates to macroscopic performance factors, such as mechanical loss, provides an important path towards enabling the accelerated discovery and development of improved coatings. High precision x-ray scattering measurements of thin films of amorphous zirconia-doped tantala (ZrO_2−Ta_2O_5) show systematic changes in intermediate range order (IRO) as a function of postdeposition heat treatment (annealing). Atomic modeling captures and explains these changes, and shows that the material has building blocks of metal-centered polyhedra and the effect of annealing is to alter the connections between the polyhedra. The observed changes in IRO are associated with a shift in the ratio of corner-sharing to edge-sharing polyhedra. These changes correlate with changes in mechanical loss upon annealing, and suggest that the mechanical loss can be reduced by developing a material with a designed ratio of corner-sharing to edge-sharing polyhedra
Oxygen tension, H2S, and NO bioavailability:is there an interaction?
Molecular oxygen (O2) is an essential component for survival and development. Variation in O2 levels leads to changes in molecular signaling and ultimately affects the physiological functions of many organisms. Nitric oxide (NO) and hydrogen sulfide (H2S) are two gaseous cellular signaling molecules that play key roles in several physiological functions involved in maintaining vascular homeostasis including vasodilation, anti-inflammation, and vascular growth. Apart from the aforementioned functions, NO and H2S are believed to mediate hypoxic responses and serve as O2 chemosensors in biological systems. In this literature review, we briefly discuss NO and H2S and their roles during hypoxia
- …
