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Abstract  1 

Molecular oxygen (O2) is an essential component for the survival and 2 

development of many organisms. Mammalian and other vertebrate systems have 3 

evolved to maintain O2 homeostasis and respond to changes in O2 concentrations. 4 

Variation in O2 levels leads to changes in molecular signaling and ultimately affects the 5 

physiological functions of many organisms. Nitric oxide (NO) and hydrogen sulfide 6 

(H2S) are two gaseous cellular signaling molecules that play key roles in several 7 

physiological functions involved in maintaining vascular homeostasis including 8 

vasodilation, anti-inflammation, and vascular growth. Apart from the aforementioned 9 

functions, NO and H2S are believed to mediate hypoxic responses and serve as O2 10 

chemosensors in biological systems. In this literature review, we briefly discuss the 11 

roles of NO and H2S during hypoxia. 12 

 13 

Introduction 14 

Oxygen (O2) is one of the key factors required for cellular respiration, growth, 15 

and development of organisms. It serves as a modulator of various cellular signaling 16 

and physiological functions.  In contrast to ambient O2 concentrations (21%), O2 tension 17 

in tissues ranges between 0 and 9%, directly relating to the metabolic demand of a 18 

given cell type in a given organ (32, 55). The mechanism of cellular response and 19 

adaptation to changing O2 concentrations, such as hypoxia, is a subject of continuous 20 

interest to basic scientists and medical professionals alike.  21 
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In cells, O2 acts as the primary electron acceptor in multiple intracellular 22 

biochemical reactions, including the generation of ATP by mitochondria for survival. 23 

However, low O2 conditions play an integral role in both pathophysiological and 24 

physiological functions, such as embryonic development, including differentiation of 25 

embryonic stem cells and progenitor cells (20).  A low O2 environment can result from 26 

insufficient blood flow to the tissue leading to inadequate tissue oxygenation, tissue 27 

hypoxia, and a reduction of mitochondrial respiration or oxidative metabolism (83). 28 

Ultimately, chronic exposure of tissue to hypoxic conditions can lead to necrosis. Cells 29 

respond to these ischemic conditions through stimulation of several molecules that 30 

regulate various physiological functions including proliferation, migration, vascular 31 

regulation, growth, and remodeling (51).  Recently two more gases, nitric oxide (NO) 32 

and hydrogen sulfide (H2S), have been studied as potential therapeutic due to a 33 

complicated interplay each other and with O2. 34 

In ancient times Greeks, Egyptians, and Romans regularly bathed in natural 35 

sulfur springs as treatments for disease (59). The levels of H2S in these sulfur springs 36 

vary based on the microbiota and O2 content (74) and have been noted to have several 37 

beneficial effects such as anti-inflammatory, anti-microbial and vasodilatory properties 38 

(53). Between the well-documented historical reports and the modern day studies of 39 

organosulfur compounds, such as garlic having health benefits like lowering blood 40 

pressure and cholesterol, it is clear that H2S can have cardiovascular benefits (5, 6). 41 

The use of nitrite (a precursor to NO) has also been documented since ancient times, 42 

first showing up as an additive in gunpowder in ancient China. Nitrite has also been 43 
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used as a food additive; its documented use as a cardiovascular therapeutic occurred 44 

around 1791 when it was used as a treatment for angina (12). 45 

NO and H2S are two major gaseous signaling molecules that play pivotal roles in 46 

the regulation of vascular tone and remodeling, anti-inflammation, and neurological 47 

functions. NO is highly reactive and circulating pools of nitrite are typically reported to 48 

demonstrate the bioavailability of nitric oxide, plasma levels of nitrite are in the high 49 

nanomolar range (68). H2S is found in blood and tissues at concentrations below 1 μM, 50 

however there is contention in the field over this number with much higher values being 51 

reported; the conflicting data reflects the lack of a standard measuring technique (39). 52 

Recent literature reflects an increased study of the interactions and co-adducts of NO 53 

and H2S (45, 46).  Although the individual roles these two gaseous molecules play in 54 

both physiological and pathophysiological function is appreciated, consequences of 55 

their interactions are less well known.  Understanding the interactions between these 56 

two molecules will provide a better understanding of their therapeutic effects.  The 57 

present review focuses primarily on the probable interactions between NO and H2S on 58 

pathophysiological functions under hypoxic conditions.  59 

Mitochondrial Respiration/Cytochrome C Oxidase: 60 

Cells generate ATP through the electron transport chain.  The final enzyme in the 61 

respiratory electron transport chain is cytochrome c oxidase (CcO) or Complex IV (91).  62 

CcO is a large transmembrane protein complex that is found in bacteria and eukaryotic 63 

mitochondria. It contains two heme centers, cytochrome a, cytochrome a3, and two 64 

copper centers (CuA and CuB).  O2 is reduced at cytochrome a3 and one copper center 65 
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(CuB) in the cell, this is the interaction we focus on for figure 1 as NO and H2S both 66 

interact with this reaction. CcO is found in its oxidized (active) form when O2 is in 67 

sufficient supply (figure 1 panel A), but is found mainly in the reduced form as O2 68 

becomes scarce (91). When CcO is in its reduced state O2 binding is decreased, yet 69 

NO binds to heme in its ferrous state (Fe2+). However, when CcO is in its oxidized form, 70 

O2 is bound to the heme while NO binds one of the two copper centers.  Both of these 71 

binding modifications are reversible. Interestingly, binding of NO to the oxidized CcO 72 

results in oxidation of NO to nitrite. As O2 concentrations decrease, NO is no longer 73 

bound to the oxidized CcO and thus is no longer converted to nitrite.  The available NO 74 

molecules compete with the O2 molecules, ultimately inhibiting CcO activity (figure 1 75 

panel B). A protective mechanism of NO is then engaged and soluble guanylate 76 

cyclase is activated, leading to vasodilation, thereby enhancing O2 delivery through 77 

increased bulk blood flow in an effort to combat the NO competition (91).  78 

Mitochondrial interactions of H2S are complex and poorly understood. H2S can 79 

act as both an inhibitor and an electron donor for CcO, depending on the 80 

concentrations of O2 and H2S in the system (61). H2S concentrations are low (≥10–81 

20 nM) in normoxic concentrations, but are increased in hypoxic conditions. At low H2S 82 

concentrations, H2S is oxidized by sulfide quinone reductase (SQR), which protects 83 

CcO from inactivation (18, 30). However, hypoxia leads to increases in H2S levels that 84 

subsequently inhibit CcO (figure 1 panel D). This inhibition of CcO may result in the 85 

generation of mitochondrial reactive oxygen species as observed under hypoxic 86 
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conditions. In contrast to the competitive inhibition of CcO by the binding of NO and 87 

O2, the inhibition of CcO by H2S is noncompetitive with O2 (18, 30). 88 

At low concentrations and normoxic conditions, H2S can rapidly reduce Fe3+, 89 

Cu2+, and cytochrome c, the biological reductant of CcO (17, 30). A recent study 90 

correlating H2S to the hibernation of brown bears, Ursus arctos, shows that alteration 91 

of H2S metabolism and intracellular GSH leads to aerobic metabolic suppression 92 

during hibernation (76). Other recent studies have demonstrated that mitochondrial 93 

inhibition may lead to a suspended animation-like state (9) with decreased O2 94 

consumption and metabolism. By exploiting this hypometabolic phenomenon, 95 

protection from ischemic reperfusion injury could be provided (10, 31). The complex 96 

interplay between O2, NO and H2S does not end with influencing of CcO; O2 97 

concentrations alone can directly influence the production of NO and H2S as well. 98 

Effects of O2 on H2S production:  99 

 H2S can be generated endogenously through multiple pathways, including: L-100 

cysteine by pyridoxal-5′-phosphate (PLP) dependent enzymes, cystathionine γ-lyase 101 

(CSE), cystathionine β-synthase (CBS) and from 3-mercaptopyruvate by 3-102 

mercaptopyruvate sulfurtransferase (3-MST) with cysteine aminotransferase (CAT) (44). 103 

These various biosynthetic mechanisms have previously been described thoroughly in 104 

the literature.  Interestingly, through direct and indirect interactions, O2 influences the 105 

production of H2S and the aforementioned mechanisms.  Previously it was reported 106 

that the CBS enzyme has a regulatory heme cofactor that acts as a redox-dependent 107 

gas sensor (36). In its ferrous form (Fe2+), the heme moiety of CBS can bind with 108 
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gaseous molecules such as CO and NO, leading to the inhibition of CBS catalytic 109 

activity (36). However, in the presence of O2 it can be converted from the ferrous to 110 

ferric heme state (Fe3+), thereby leading to a recovery of CBS enzymatic activity (36). 111 

Under hypoxic conditions the activity of CBS is increased through diminished Fe-CO 112 

interactions; an apparent result of this hypoxia-induced activity of CBS is the inhibition 113 

of the CO producing enzyme, hemoxygenase-2 (HO-2) (56).  114 

The bioavailability of H2S, whether in the context of steady state in vivo 115 

concentrations or supplementation via exogenous administration, is dictated by O2 116 

concentrations. O2 has an antagonistic effect on H2S, leading to its oxidation (48) and 117 

consequently attenuating its biological actions (85). The spontaneous reaction of H2S 118 

with O2, while slow, can cause an appreciable decrease in H2S concentrations; tissues 119 

with relatively high O2 concentrations may have less H2S compared to tissues with 120 

lower O2 tensions (63). This has implications in pathological states of hypoxia such as 121 

ischemia-reperfusion, where the availability and signaling effects of H2S may be 122 

augmented; various studies have reported that H2S production is enhanced during 123 

hypoxia and attenuated in the presence of O2 (63, 97). Our group has previously 124 

demonstrated that O2 concentration affects sulfide stability and its measurements from 125 

biological samples, apart from pH (79, 80). At a given pH of 9.5, the presence of 21% 126 

O2 decreases the stability of sulfide to an approximate level of 70%; at 1% O2, sulfide 127 

increases to >90% stability (80).   128 

 129 

Effects of O2 on NOS and NO production:  130 
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 NO is an uncharged, small and membrane-permeable molecule that participates 131 

in cellular events either by directly modifying proteins via S-nitrosylation or by 132 

activating specific signaling pathways. The synthesis of cellular NO is enzyme driven 133 

and requires L-arginine and O2 as substrates. In addition, cofactors such as 134 

tetrahydrobiopterin (BH4), flavin adenine dinucleotide (FAD), flavin mononucleotide 135 

(FMN), and reducing equivalents donated by NADPH are essential for NO production. 136 

NO is synthesized by the enzyme NO synthase (NOS) that exists in three isomeric 137 

forms, namely endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS 138 

(nNOS). Although the three isoforms generate NO, each enzyme maintains different 139 

binding affinities for substrates and differential cell type-specific expressions (29). The 140 

substrate L-arginine is hydroxylated enzymatically to Nω-hydroxy-L-arginine, which 141 

then converts into L-citrulline and NO in a process requiring two molecules of O2 (92). 142 

Each of the NOS enzymes are heme containing flavoproteins that produce NO in a 143 

calcium-dependent manner.  144 

The catalysis of NOS, leading to the biosynthesis of NO, depends on the 145 

oxidation state of iron (Fe) in heme. Briefly, upon reduction of iron from its ferric state 146 

(Fe3+) to its ferrous state (Fe2+), Fe2+ binds with O2 to form a Fe2+-O2 complex, which 147 

then reacts with Nω-hydroxy-L-arginine to generate Fe3+ and NO. However, some of the 148 

NO formed by the reaction reacts with heme and forms a more stable Fe2+-NO 149 

complex. The liberation of NO from the Fe2+-NO complex and the regeneration of Fe3+ 150 

heme in the first step of the reaction requires O2 (84, 88, 93). Interestingly, the release 151 

of NO is governed by the rate constant for the initial reaction of O2 and Fe2+, the rate 152 
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constant for NO dissociation, and the rate constant for reduction of heme (88). Each of 153 

the NOS isoforms have different KmO2 values; in terms of enzymatic activity, KmO2 of 154 

NOS is the amount of O2 that is required to drive NOS catalysis to half of its maximal 155 

velocity (93). The isoform with the highest rate constant is nNOS at 350 μM, followed 156 

by iNOS with a value of 135 μM (21), and eNOS with the lowest rate constant at 23 μM.  157 

The varying KmO2 values for the different NOS isoforms suggest that there is a 158 

difference in NO production, dependent on the partial pressure of O2 (29).  159 

It is important to note that O2 tension varies from tissue to tissue, resulting in 160 

varying levels of NO production from each different NOS isoform. Based on their 161 

respective KmO2 values, nNOS is the most sensitive and eNOS is the least sensitive to 162 

changes in physiological O2 tension levels (93). Using stop-flow experiments, Abu-Soud 163 

et al. showed that the release of NO, trapped as Fe2+-NO, through nNOS activity is 164 

dependent on O2 concentration; O2 was demonstrated to be an important rate-limiting 165 

factor in NO bioavailability (84). 166 

As outlined above, the production of NO and H2S is dependent on changes in 167 

oxidative status and O2 concentrations in a tissue or cell, an important factor to 168 

consider in developing therapeutic treatment. Conditions that affect NO production 169 

have also been shown to influence H2S production; however, NO-H2S interactions are 170 

still poorly understood. Although research studying H2S and NO interactions has 171 

steadily increased in recent years, more studies must be conducted in order to identify 172 

some of these complex interaction; a deeper understanding of the interactions 173 
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between the two gases would enable the scientific community to better explore 174 

potential therapeutic applications of H2S and NO. 175 

From the literature it is clear that both NO and H2S regulate various 176 

pathophysiological conditions and are capable of influencing corresponding signaling 177 

mechanisms that are related in this process. Additionally, O2 concentrations play an 178 

important role in production of NO and H2S as discussed in the previous section. The 179 

following sections will discuss the regulation and status of NO and H2S under varied O2 180 

levels during transport of oxygen, vasoregulation, and in cardiovascular and cerebral 181 

pathophysiology. 182 

 183 

Hemoglobin 184 

Hemoglobin (Hb) has a prominent role in the circulatory system, O2 transport in 185 

blood. The transport of O2 by hemoglobin is tightly regulated and the loading and 186 

unloading of O2 is sensitive to pH, temperature, O2 concentration, and several other 187 

physical factors, including H2S. H2S binds to Hb in red blood cells to form 188 

sulfhemoglobin, which decreases the affinity of hemoglobin for O2 and thereby inhibits 189 

O2 transport (7, 15). A reduction in the O2 transport capacity of Hb then sets off a chain 190 

of reactions, adversely affecting electron flow and mitochondrial ATP formation as H2S 191 

and HS- ligate the heme a3 of CcO (62), which can then activate the KATP channels (16). 192 

H2S further affects hemoglobin under certain conditions, such as a significant decrease 193 

in Hb saturation (arterial O2 saturation) during hypoxia (86, 87) as shown by Stein et. al. 194 
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H2S further decreased Hb saturation under hypoxic conditions, decreasing O2 transport 195 

capacity and thereby inducing a state of hypometabolism or suspended animation.  196 

Reduction of the ferric (Fe3+) center to ferrous (Fe2+) in hemes appears to be a 197 

common reaction for all heme proteins that generate the highly reactive HS- molecule, 198 

eventually producing protein persulfides or inorganic polysulfides (60). A recent study 199 

by the Banerjee lab showed that Hb plays an interesting role in facilitating oxidation of 200 

H2S (94). In its ferric state, Hb in red blood cells (RBCs) catalyze the oxidation of H2S, 201 

which then produces thiosulfate and hydropolysulfides. This study also demonstrated 202 

that H2S produced in RBCs is generated via the 3-mercaptopyruvate sulfurtransferase 203 

(MST) pathway that facilitates the oxidation of H2S in the presence of hemoglobin. The 204 

methemoglobin-dependent sulfide oxidation cycle is completed by 205 

NADPH/flavoprotein/methemoglobin reductase, which restores hemoglobin back to its 206 

oxy-Hb state (94).  207 

H2S can also modify hemes in myoglobin and hemoglobin by reacting with the 208 

oxyhemoglobin to generate sulfhemoglobin, a dangerous complex that disrupts O2 209 

loading in the blood (72). ‘Sulfhemoglobinemia’ is a medical condition (67) in which 210 

heme is modified to form a sulfheme derivative (77). Sulfheme is likely irreversible and 211 

impairs the O2 binding capacity of the metal centers, leading to potentially lethal 212 

cyanosis. On the other hand, reversible sulfide binding to Hb could be an area of 213 

scientific interest as manipulating reversible sulfide binding could potentially regulate 214 

the levels of free H2S and maintain reserve pools in the circulation and decrease toxic 215 

levels of sulfide. However, the role of hemoglobin–sulfide interactions and their kinetics 216 
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is still unclear. More studies focused on understanding heme-sulfide interaction and 217 

sulfide oxidation under physiological conditions must be performed in order to facilitate 218 

a more accurate understanding of the complex mechanisms that regulate O2 transport.  219 

 Deoxygenated red blood cells are able to reduce nitrite to form NO, however 220 

oxygenated red blood cells oxidize nitrite to nitrate (43). During this reaction 221 

methemoglobin is formed. During periods of redox imbalance methemoglobin can also 222 

be formed by direct oxidation of hemoglobin by NO (28). The ferrous center of heme is 223 

oxidized to the ferric form and unable to bind oxygen during the formation of 224 

methemoglobin. Figure 2 represents the anticipated oxygen hemoglobin dissociation 225 

curve for a patient presenting with either mild methemoglobinemia or mild 226 

sulfhemoglobinemia. Sulfhemoglobin is unable to carry oxygen however high levels of 227 

sulfhemoglobin can be still be well tolerated due to the rightward shift (figure 2) of the 228 

oxygen hemoglobin dissociation curve (promoting oxygen unloading for tissues) (3). In 229 

contrast to sulfhemoglobin, methemoglobin causes a leftward shift (decreasing oxygen 230 

release) of the oxygen hemoglobin dissociation curve (figure 2), high levels will result in 231 

severe tissue oxygen deprivation (3).  232 

The presence of an iron center in hemoglobin makes it an ideal candidate to 233 

study H2S/NO interactions. Furthermore, hemoglobin is extremely sensitive to shifting 234 

O2 concentrations in the blood milieu due to conditions such as ischemia, cellular 235 

metabolic demand, and hypoxia. More studies on the interactions between hemoglobin 236 

and the cellular signaling molecules NO and H2S hold immense potential for creating a 237 

better understanding of O2 depletion-related pathologies, the applicable 238 
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cardioprotective properties of H2S and NO, and novel therapeutic strategies. For 239 

example, areas of blocked blood flow might benefit from delivery of extra H2S and/or 240 

NO to the location, stimulating vasodilation and increasing the amount of blood 241 

delivered. This more effective delivery system could be utilized therapeutically. 242 

 243 

Vasoregulation  244 

The vasoregulatory effects of H2S have been recently studied (33, 90). H2S acts 245 

as a hyperpolarizing factor on blood vessels via the regulation of K+ channel activity 246 

and elevation of cGMP, a second messenger molecule that relaxes smooth muscle 247 

cells and thereby increases blood flow (96).  The effects of physiological O2 248 

concentrations and H2S on vessel regulation and varied O2 levels should also be 249 

considered; reports indicate that H2S induced vasorelaxation at physiological O2 levels 250 

is further potentiated at low O2 conditions (43, 63).  251 

However, with higher than normal O2 levels, H2S has the tendency to induce 252 

vasoconstriction (43), which could be due to oxidation of sulfide to sulfite. Possible H2S 253 

interactions with NO and variations in nitrosothiols may also explain the differential 254 

effects of H2S (2, 19, 23). It was shown that nitrosothiol formation causes hypoxic 255 

vasodilation, often mediated by red blood cells (19). However, a few studies report that 256 

the formation of nitrosothiol may cause vasoconstriction (2).  Future studies that focus 257 

on H2S - NO interactions with vasodilation should be performed in order to reconcile 258 

such discrepancies in the literature. Further elucidation of interactions between 259 
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physiological regulators of blood pressure and vasodilation would open numerous 260 

possibilities of therapeutic delivery and agents through H2S - NO mechanisms. 261 

 262 

Cardiovascular disease and I/R injury:  263 

The formation of atherosclerotic plaques deprives the circulatory system of O2, 264 

leading to reduced tissue perfusion and ischemia. Progression of this condition leads 265 

to severe vascular dysfunctions such as peripheral vascular disease (PVD), coronary 266 

artery disease (CAD), and myocardial injury. Models of atherosclerosis and 267 

cardiovascular dysfunction in the literature suggest that a decrease in bioavailable H2S 268 

is a consequence of reduced expression of the enzyme cystathionine-γ-lyase (CSE) 269 

(52, 71, 98). Extensive studies have demonstrated the cytoprotective effects of H2S 270 

under ischemic reperfusion (I/R) injury in the heart (13, 14, 22, 42, 64, 66, 81, 82). 271 

Sulfide-based therapies have been shown to ameliorate the metabolic changes that 272 

contribute to cardiovascular disease and these protective effects have been 273 

demonstrated in various animal species (13, 14, 22, 42, 64, 66, 81, 82).  274 

H2S therapy improves multiple cardiac functions such as collateral formation, 275 

improved left ventricular (LV) pressures, suppression of leucocyte infiltration, 276 

attenuation of fibroblast hyperplasia, and the preservation of mitochondrial O2 277 

consumption. In a myocardial infarction model using cardiac-specific CSE−/− and CSE 278 

overexpressed mice, Lefer and colleagues demonstrated that CSE interactions with 279 

H2S increase the survival of mice through reduced oxidative stress and enhanced 280 
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cardiac function (13, 22, 42). However, H2S as a treatment for chronic and end stage 281 

cardiovascular diseases requires more elaborate research.  282 

In models of ischemia reperfusion, NO bioavailability is reduced due to many 283 

factors, such as oxidation, which results in a poor prognosis. Investigators have shown 284 

in cardiac ischemia reperfusion models that a healthy tissue phenotype can be 285 

restored by supplementing NO prodrugs (38). In murine models of peripheral artery 286 

disease, nitrite therapy augmented angiogenesis in a NO dependent manner (8, 40, 47, 287 

68, 69). During myocardial ischemia reperfusion, eNOS derived-NO production is 288 

important in the attenuation of neutrophil recruitment and decreased infarct sizes (35).  289 

NO can be found in the circulation in many different forms and can change 290 

forms at different sites in the body. In the plasma, the oxidation of NO forms nitrite 291 

(NO2
-) ions and can undergo further oxidation to form nitrate (NO3

-) ions. NO also reacts 292 

very rapidly with superoxide to form the potent peroxynitrite vasoconstrictor (ONOO-), 293 

which is responsible for loss of NO bioavailability (78). The exact mechanisms of NO 294 

and H2S in cardiovascular disease and I/R injury are not completely known and further 295 

investigation of the interactions between NO and H2S in the context of O2 is warranted.    296 

 297 

Cerebral I/R injury: 298 

Ischemic cerebrovascular disease is a serious health complication with high 299 

morbidity. Multiple studies have demonstrated that severe neurological conditions, 300 

such as stroke and Alzheimer’s disease, are the result of a variety of vascular 301 

abnormalities (26). Several factors, including impairment of neurovascular coupling and 302 
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blood-brain barrier leakage, are responsible for the neurodegeneration that may lead to 303 

chronic cerebral ischemia, thereby causing cognitive decline and behavioral changes 304 

(4, 70). 305 

 Abe and Kimura were the first to demonstrate the function of H2S as a 306 

neuromodulator, serving as a potential physiological signal regulator at low 307 

concentrations and a toxic gas at high concentrations (1). Normal regulation of 308 

neuronal and cerebrovascular functions is dependent on H2S (41). The effect of H2S on 309 

the brain varies depending on its concentration and the extent of hypoxia/ischemia-310 

induced injuries. Levels of S-adenosylmethionine, a molecule made from ATP which 311 

plays an integral role in anabolic reactions, are reduced in patients with Alzheimer’s 312 

disease, possibly due to reduced CBS activity and H2S production (50,58).  CBS is 313 

linked to neurodegenerative diseases caused by genetic defects such as 314 

Homocystinuria, Down Syndrome, and Huntington's Disease (11, 37). These 315 

observations suggest that neuronal dysfunction is directly related to the abnormal 316 

regulation of H2S production. 317 

A variety of protective effects of H2S are mediated by endogenous and 318 

exogenous concentrations of H2S.  H2S may function as a neuromodulator by 319 

enhancing the N-methyl-D-aspartate (NMDA) receptor-mediated responses and 320 

subsequent hippocampal long-term potentiation (LTP) (1). Studies demonstrate that 321 

H2S reduces infarct size, inflammation and apoptosis, as well as, improves neurological 322 

function by reducing hippocampal damage in cerebral occlusion models (24, 49, 75, 323 

99). Additional protective effects have also been demonstrated in the overexpression of 324 
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H2S producing enzymes, such as CSE and CBS, which delay cerebral ischemic injury 325 

and improve neurological function (27, 54). Production of H2S by CSE causes post-326 

ischemic cerebral vasodilation and plays a significant role in early disruption of the 327 

blood brain barrier following cerebral ischemia (34).  328 

Several studies have demonstrated that an excess production of H2S can lead 329 

to severe cerebral damage. A study in a rat cerebral ischemia model showed that 330 

increased CBS expression and corresponding H2S levels resulted in a damaged cortex 331 

region with an increased infarct volume. However, upon administration of CBS/CSE 332 

inhibitors that reduced cortical H2S production, a correlating reduction in infarct size 333 

was observed (73). Similarly, in a global cerebral ischemia model, abnormally high 334 

concentrations of H2S treatments enhanced neuronal injury, while low concentrations 335 

attenuated damage (75). This biphasic response should be further researched to 336 

discover the precise role of H2S in cerebral I/R disease and the corresponding 337 

concentrations of H2S during ischemic events. 338 

Shortly following cerebral ischemia, typically caused by a stroke, eNOS releases 339 

NO locally leading to vasodilation as a protective mechanism (57). However, in long-340 

term stroke-induced ischemia an overproduction of NO by nNOS and iNOS leads to 341 

exacerbated injury (57). The biphasic nature of NO release has led to a variety of 342 

therapeutic strategies during stroke-induced ischemia. The ideal time to administer 343 

NO-releasing drugs has been determined to be during the initial or protective phase 344 

(25), which would then ideally followed be by an inhibition of NO to prevent damage 345 

during the second or detrimental phase. 346 
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In addition, both H2S and NO have been found to have a biphasic relationship in 347 

the brain. Early production of NO and low levels of H2S are found to have a beneficial, 348 

protective result, while late production (excess NO) and high levels of H2S have been 349 

found to be detrimental. While this provides an opportunity for the therapeutic delivery 350 

of both of these gaseous molecules, possible interactions of H2S and NO must be 351 

taken into consideration while designing potential therapy. If H2S and NO influence one 352 

another either in production or in chemical interaction, therapeutic doses of one 353 

without considering the effects of the other could result in a non-therapeutic outcome. 354 

H2S protection and recovery from an I/R mediated injury and oxidative stress is 355 

a well-studied phenomenon. Several studies have been carried out using genetic or 356 

pharmacological approaches in multiple organs such as the heart and brain to 357 

elucidate the role of H2S in I/R injury, oxidative stress, and apoptosis. However, the 358 

mechanisms that mediate H2S-induced protection, specifically via interactions with NO, 359 

remain unknown and require further study.  360 

 361 

Conclusion 362 

Over the past decade, there have been several studies that demonstrate the 363 

physiological effects of H2S in mammalian systems. Therapeutic potential of H2S has 364 

been exploited for treating multiple defects including cardiovascular dysfunction, 365 

inflammation, ischemia-reperfusion injury and shock (89, 95). There are many H2S-366 

producing compounds that regulate various biological functions and likely interact with 367 

NO (39). In this review we have discussed both the endogenous and exogenous effects 368 
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of H2S on pathophysiological functions, focusing on the hypoxic/ischemic setting. 369 

However, a comprehensive mechanism of H2S-mediated effects and its interactions 370 

with NO under varied O2 conditions has yet to be studied. Research on the interactions 371 

of NO and H2S under varied O2 conditions would prove immensely beneficial in 372 

developing novel therapeutic strategies.  373 
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Figure 1: NO interaction with CcO under normoxic conditions (A), and low oxygen conditions (B). H2S is shown 
reacting with CcO under normoxic (C), and hypoxic (D) conditions. NO, nitric oxide; H2S, hydrogen sulfide; Fe, iron; 
Fe3+ (oxidized), Fe2+ (reduced); Cu, copper; e-, electron; SH, sulfhydryl group. 
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Figure 2: Hydrogen sulfide interaction with hemoglobin 
(sulfhemoglobin) causes a rightward shift in the oxyhe-
moglobin dissociation curve, however NO interaction 
with hemoglobin (methemoglobin) causes a leftward 
shift.


