425 research outputs found

    Semileptonic Λb,c\Lambda_{b,c} to Nucleon Transitions in Full QCD at Light Cone

    Full text link
    The tree level semileptonic Λbplν\Lambda_{b}\to pl\nu and Λcnlν\Lambda_{c}\to nl\nu transitions are investigated using the light cone QCD sum rules approach in full theory. The spin--1/2, ΛQ\Lambda_{Q} baryon with Q=bQ=b or cc, is considered by the most general form of its interpolating current. The time ordering product of the initial and transition currents is expanded in terms of the nucleon distribution amplitudes with different twists. Considering two sets of independent input parameters entering to the nucleon wave functions, namely, QCD sum rules and Lattice QCD parameters, the related form factors and their heavy quark effective theory limits are calculated and compared with the existing predictions of other approaches. It is shown that our results satisfy the heavy quark symmetry relations for lattice input parameters and b case exactly and the maximum violation is for charm case and QCD sum rules input parameters. The obtained form factors are used to compute the transition rates both in full theory and heavy quark effective theory. A comparison of the results on decay rate of Λbplν\Lambda_{b}\to pl\nu with those predicted by other phenomenological methods or the same method in heavy quark effective theory with different interpolating current and distribution amplitudes of the Λb\Lambda_{b} is also presented.Comment: 18 Pages and 16 Table

    In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [(68)Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [(68)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [(68)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [(18)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34(+) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [(68)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    Establishment of infectious HCV virion-producing cells with newly designed full-genome replicon RNA

    Get PDF
    Hepatitis C virus (HCV) replicon systems enable in-depth analysis of the life cycle of HCV. However, the previously reported full-genome replicon system is unable to produce authentic virions. On the basis of these results, we constructed newly designed full-genomic replicon RNA, which is composed of the intact 5′-terminal-half RNA extending to the NS2 region flanked by an extra selection marker gene. Huh-7 cells harboring this full-genomic RNA proliferated well under G418 selection and secreted virion-like particles into the supernatant. These particles, which were round and 50 nm in diameter when analyzed by electron microscopy, had a buoyant density of 1.08 g/mL that shifted to 1.19 g/mL after NP-40 treatment; these figures match the putative densities of intact virions and nucleocapsids without envelope. The particles also showed infectivity in a colony-forming assay. This system may offer another option for investigating the life cycle of HCV

    Targeting a host-cell entry factor barricades antiviral-resistant HCV variants from on-therapy breakthrough in human-liver mice

    Get PDF
    Objective: Direct-acting antivirals (DAAs) inhibit hepatitis C virus (HCV) infection by targeting viral proteins that play essential roles in the replication process. However, selection of resistance-associated variants (RAVs) during DAA therapy has been a cause of therapeutic failure. In this study, we wished to address whether such RAVs could be controlled by the co-administration of host-targeting entry inhibitors that prevent intrahepatic viral spread. Design: We investigated the effect of adding an entry inhibitor (the anti-scavenger receptor class B type I mAb1671) to a DAA monotherapy (the protease inhibitor ciluprevir) in human-liver mice chronically infected with HCV of genotype 1b. Clinically relevant non-laboratory strains were used to achieve viraemia consisting of a cloud of related viral variants (quasispecies) and the emergence of RAVs was monitored at high resolution using next-generation sequencing. Results: HCV-infected human-liver mice receiving DAA monotherapy rapidly experienced on-therapy viral breakthrough. Deep sequencing of the HCV protease domain confirmed the manifestation of drug-resistant mutants upon viral rebound. In contrast, none of the mice treated with a combination of the DAA and the entry inhibitor experienced on-therapy viral breakthrough, despite detection of RAV emergence in some animals. Conclusions: This study provides preclinical in vivo evidence that addition of an entry inhibitor to an anti-HCV DAA regimen restricts the breakthrough of DAA-resistant viruses. Our approach is an excellent strategy to prevent therapeutic failure caused by on-therapy rebound of DAA-RAVs. Inclusion of an entry inhibitor to the newest DAA combination therapies may further increase response rates, especially in difficult-to-treat patient populations

    Characterisation of the Immunophenotype of Dogs with Primary Immune-Mediated Haemolytic Anaemia

    Get PDF
    Immune-mediated haemolytic anaemia (IMHA) is reported to be the most common autoimmune disease of dogs, resulting in significant morbidity and mortality in affected animals. Haemolysis is caused by the action of autoantibodies, but the immunological changes that result in their production have not been elucidated.To investigate the frequency of regulatory T cells (Tregs) and other lymphocyte subsets and to measure serum concentrations of cytokines and peripheral blood mononuclear cell expression of cytokine genes in dogs with IMHA, healthy dogs and dogs with inflammatory diseases.19 dogs with primary IMHA, 22 dogs with inflammatory diseases and 32 healthy control dogs.Residual EDTA-anti-coagulated blood samples were stained with fluorophore-conjugated monoclonal antibodies and analysed by flow cytometry to identify Tregs and other lymphocyte subsets. Total RNA was also extracted from peripheral blood mononuclear cells to investigate cytokine gene expression, and concentrations of serum cytokines (interleukins 2, 6 10, CXCL-8 and tumour necrosis factor α) were measured using enhanced chemiluminescent assays. Principal component analysis was used to investigate latent variables that might explain variability in the entire dataset.There was no difference in the frequency or absolute numbers of Tregs among groups, nor in the proportions of other lymphocyte subsets. The concentrations of pro-inflammatory cytokines were greater in dogs with IMHA compared to healthy controls, but the concentration of IL-10 and the expression of cytokine genes did not differ between groups. Principal component analysis identified four components that explained the majority of the variability in the dataset, which seemed to correspond to different aspects of the immune response.The immunophenotype of dogs with IMHA differed from that of dogs with inflammatory diseases and from healthy control dogs; some of these changes could suggest abnormalities in peripheral tolerance that permit development of autoimmune disease. The frequency of Tregs did not differ between groups, suggesting that deficiency in the number of these cells is not responsible for development of IMHA

    Bile Acids Specifically Increase Hepatitis C Virus RNA-Replication

    Get PDF
    <div><h3>Background</h3><p>Hepatitis C virus (HCV) patients with high serum levels of bile acids (BAs) respond poorly to IFN therapy. BAs have been shown to increase RNA-replication of genotype 1 but not genotype 2a replicons. Since BAs modulate lipid metabolism including lipoprotein secretion and as HCV depends on lipids and lipoproteins during RNA-replication, virus production and cell entry, BAs may affect multiple steps of the HCV life cycle. Therefore, we analyzed the influence of BAs on individual steps of virus replication.</p> <h3>Methods</h3><p>We measured replication of subgenomic genotype (GT) 1b and 2a RNAs as well as full-length GT2a genomes in the presence of BAs using quantitative RT-PCR and luciferase assays. Cell entry was determined using HCV pseudoparticles (HCVpp). Virus assembly and release were quantified using a core-specific ELISA. Replicon chimeras were employed to characterize genotype-specific modulation of HCV by BAs. Lunet CD81/GFP-NLS-MAVS cells were used to determine infection of Con1 particles.</p> <h3>Results</h3><p>BAs increased RNA-replication of GT1b replicons up to 10-fold but had no effect on subgenomic GT2a replicons both in Huh-7 and HuH6 cells. They did not increase viral RNA translation, virus assembly and release or cell entry. Lowering replication efficiency of GT2a replicons rendered them susceptible to stimulation by BAs. Moreover, replication of full length GT1b with or without replication enhancing mutations and GT2a genomes were also stimulated by BAs.</p> <h3>Conclusions</h3><p>Bile acids specifically enhance RNA-replication. This is not limited to GT1, but also holds true for GT2a full length genomes and subgenomic replicons with low replication capacity. The increase of HCV replication by BAs may influence the efficacy of antiviral treatment in vivo and may improve replication of primary HCV genomes in cell culture.</p> </div
    corecore