3,327 research outputs found

    A Comparative Study of the Valence Electronic Excitations of N_2 by Inelastic X-ray and Electron Scattering

    Full text link
    Bound state, valence electronic excitation spectra of N_2 are probed by nonresonant inelastic x-ray and electron scattering. Within the usual theoretical treatments, dynamical structure factors derived from the two probes should be identical. However, we find strong disagreements outside the dipole scattering limit, even at high probe energies. This suggests an unexpectedly important contribution from intra-molecular multiple scattering of the probe electron from core electrons or the nucleus. These effects should grow progressively stronger as the atomic number of the target species increases.Comment: Submitted to Physical Review Letters April 27, 2010. 12 pages including 2 figure pages

    A Nuclear Physics Program at the ATLAS Experiment at the CERN Large Hadron Collider

    Full text link
    The ATLAS collaboration has significant interest in the physics of ultra-relativistic heavy ion collisions. We submitted a Letter of Intent to the United States Department of Energy in March 2002. The following document is a slightly modified version of that LOI. More details are available at: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/SM/ionsComment: Letter of Intent submitted to the United States Department of Energy Nuclear Physics Division in March 2002 (revised version

    The Kasteleyn model and a cellular automaton approach to traffic flow

    Full text link
    We propose a bridge between the theory of exactly solvable models and the investigation of traffic flow. By choosing the activities in an apropriate way the dimer configurations of the Kasteleyn model on a hexagonal lattice can be interpreted as space-time trajectories of cars. This then allows for a calculation of the flow-density relationship (fundamental diagram). We further introduce a closely-related cellular automaton model. This model can be viewed as a variant of the Nagel-Schreckenberg model in which the cars do not have a velocity memory. It is also exactly solvable and the fundamental diagram is calculated.Comment: Latex, 13 pages including 3 ps-figure

    Particle Ratios, Equilibration, and the QCD Phase Boundary

    Get PDF
    We discuss the status of thermal model descriptions of particle ratios in central nucleus-nucleus collisions at ultra-relativistic energy. An alternative to the ``Cleymans-Redlich'' interpretation of the freeze-out trajectory is given in terms of the total baryon density. Emphasis is placed on the relation between the chemical equilibration parameters and the QCD phase boundary. Furthermore, we trace the essential difference between thermal model analyses of data from collisions between elementary particles and from heavy ion collisions as due to a transition from local strangeness conservation to percolation of strangeness over large volumes, as occurs naturally in a deconfined medium. We also discuss predictions of the thermal model for composite particle production.Comment: Contribution to SQM2001 Conference, submitted to J. Phys.

    Monte Carlo simulations of fluid vesicles with in plane orientational ordering

    Full text link
    We present a method for simulating fluid vesicles with in-plane orientational ordering. The method involves computation of local curvature tensor and parallel transport of the orientational field on a randomly triangulated surface. It is shown that the model reproduces the known equilibrium conformation of fluid membranes and work well for a large range of bending rigidities. Introduction of nematic ordering leads to stiffening of the membrane. Nematic ordering can also result in anisotropic rigidity on the surface leading to formation of membrane tubes.Comment: 11 Pages, 12 Figures, To appear in Phys. Rev.

    The local electronic structure of alpha-Li3N

    Full text link
    New theoretical and experimental investigation of the occupied and unoccupied local electronic density of states (DOS) are reported for alpha-Li3N. Band structure and density functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS finds less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering (NRIXS), RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s- and p-type components of the unoccupied local final density of states projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final density of states due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generically applicable for low atomic number compounds.Comment: 34 pages, 7 figures, 1 tabl

    Reexamining the Lyman-Birge-Hopfield band of N2

    Get PDF
    Motivated by fundamental molecular physics and by atmospheric and planetary sciences, the valence excitations of N2 gas have seen several decades of intensive study, especially by electron-energy-loss spectroscopy (EELS). It was consequently surprising when a comparison of nonresonant inelastic x-ray scattering (NIXS) and nonresonant EELS found strong evidence for violations of the first Born approximation for EELS when leaving the dipole scattering limit. Here we reassess the relative strengths of the constituent resonances of the lowest-energy excitations of N2, encompassed by the so-called Lyman-Birge-Hopfield (LBH) band, expanding on the prior, qualitative interpretation of the NIXS results for N2 by both quantifying the generalized oscillator strength of the lowest-energy excitations and also presenting a time-dependent density functional theory (TDDFT) calculation of the q dependence of the entire low-energy electronic excitation spectrum. At high q, we find that the LBH band has an unexpectedly large contribution from the octupolar w 1Δu resonance exactly in the regime where theory and EELS experiment for the presumed-dominant a 1Πg resonance have previously had substantial disagreement, and also where the EELS results must now be expected to show violations of the Born approximation. After correcting for this contamination, the a 1Πg generalized oscillator strength from the NIXS results is in good agreement with prior theory. The NIXS spectra, over their entire q range, also find satisfactory agreement with the TDDFT calculations for both bound and continuum excitations.This work was supported by the US Department of Energy, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Australian Research Council, the Research Funds of the University of Helsinki, and the Academy of Finland (Contract No. 1127462, Centers of Excellence Program 2006-2011, and National Graduate School in Materials Physics). A.R. acknowledges support by MICINN (FIS2010-21282-C02-01),ACI-promociona (ACI2009-1036), Grupos Consolidados UPV/EHU del Gobierno Vasco (IT-319- 07), and the European Community through e-I3 ETSF project (Contract No. 211956).Peer Reviewe

    Exploring the properties of the phases of QCD matter - research opportunities and priorities for the next decade

    Full text link
    This document provides a summary of the discussions during the recent joint QCD Town Meeting at Temple University of the status of and future plans for the research program of the relativistic heavy-ion community. A list of compelling questions is formulated, and a number of recommendations outlining the greatest research opportunities and detailing the research priorities of the heavy-ion community, voted on and unanimously approved at the Town Meeting, are presented. They are supported by a broad discussion of the underlying physics and its relation to other subfields. Areas of overlapping interests with the "QCD and Hadron Structure" ("cold QCD") subcommunity, in particular the recommendation for the future construction of an Electron-Ion Collider, are emphasized. The agenda of activities of the "hot QCD" subcommunity at the Town Meeting is attached.Comment: 34 pages of text, 254 references,16 figure

    Author Correction: LKB1 loss links serine metabolism to DNA methylation and tumorigenesis

    No full text
    Erratum for: LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. [Nature. 2016
    • …
    corecore