16,201 research outputs found

    Superconductivity in striped and multi-Fermi-surface Hubbard models: From the cuprates to the pnictides

    Full text link
    Single- and multi-band Hubbard models have been found to describe many of the complex phenomena that are observed in the cuprate and iron-based high-temperature superconductors. Simulations of these models therefore provide an ideal framework to study and understand the superconducting properties of these systems and the mechanisms responsible for them. Here we review recent dynamic cluster quantum Monte Carlo simulations of these models, which provide an unbiased view of the leading correlations in the system. In particular, we discuss what these simulations tell us about superconductivity in the homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this behavior. We then describe recent simulations of a bilayer Hubbard model, which provides a simple model to study the type and nature of pairing in systems with multiple Fermi surfaces such as the iron-based superconductors.Comment: Published as part of Superstripes 2011 (Rome) conference proceeding

    Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals

    Get PDF
    The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large

    Gas-phase Absorptions of C42H18+ near 8300 Ã… below 10 K: Astronomical Implications

    Get PDF

    Precise Charm- and Bottom-Quark Masses: Theoretical and Experimental Uncertainties

    Full text link
    Recent theoretical and experimental improvements in the determination of charm and bottom quark masses are discussed. A new and improved evaluation of the contribution from the gluon condensate to the charm mass determination and a detailed study of potential uncertainties in the continuum cross section for bbˉb\bar b production is presented, together with a study of the parametric uncertainty from the αs\alpha_s-dependence of our results. The final results, mc(3GeV)=986(13)m_c(3 \text{GeV})=986(13) MeV and mb(mb)=4163(16)m_b(m_b)=4163(16) MeV, represent, together with a closely related lattice determination mc(3  GeV)=986(6)m_c(3\;{\rm GeV})=986(6) MeV, the presently most precise determinations of these two fundamental Standard Model parameters. A critical analysis of the theoretical and experimental uncertainties is presented.Comment: 12 pages, presented at Quarks~2010, 16th International Seminar of High Energy Physics, Kolomna, Russia, June 6-12, 2010; v2: references adde

    Probably Safe or Live

    Get PDF
    This paper presents a formal characterisation of safety and liveness properties \`a la Alpern and Schneider for fully probabilistic systems. As for the classical setting, it is established that any (probabilistic tree) property is equivalent to a conjunction of a safety and liveness property. A simple algorithm is provided to obtain such property decomposition for flat probabilistic CTL (PCTL). A safe fragment of PCTL is identified that provides a sound and complete characterisation of safety properties. For liveness properties, we provide two PCTL fragments, a sound and a complete one. We show that safety properties only have finite counterexamples, whereas liveness properties have none. We compare our characterisation for qualitative properties with the one for branching time properties by Manolios and Trefler, and present sound and complete PCTL fragments for characterising the notions of strong safety and absolute liveness coined by Sistla

    On the ratio of consecutive gaps between primes

    Get PDF
    In the present work we prove a common generalization of Maynard-Tao's recent result about consecutive bounded gaps between primes and on the Erd\H{o}s-Rankin bound about large gaps between consecutive primes. The work answers in a strong form a 60 years old problem of Erd\"os, which asked whether the ratio of two consecutive primegaps can be infinitely often arbitrarily small, and arbitrarily large, respectively

    Role of the dielectric constant of ferroelectric ceramic in enhancing the ionic conductivity of a polymer electrolyte composite

    Full text link
    The dispersal of high dielectric constant ferroelectric ceramic material Ba(0.7)Sr(0.3)TiO(3) (Tc~30 C) and Ba(0.88)Sr(0.12)TiO(3) (Tc~90 C) in an ion conducting polymer electrolyte (PEO:NH4I) is reported to result in an increase in the room temperature ionic conductivity by two orders of magnitude. The conductivity enhancememt "peaks" as we approach the dielectric phase transition of the dispersed ferroelectric material where the dielectric constant changes from ~ 2000 to 4000. This establishes the role of dielectric constant of the dispersoid in enhancing the ionic conductivity of the polymeric composites.Comment: 10 pages, 2 figure

    Intercalation-enhanced electric polarization and chain formation of nano-layered particles

    Full text link
    Microscopy observations show that suspensions of synthetic and natural nano-layered smectite clay particles submitted to a strong external electric field undergo a fast and extended structuring. This structuring results from the interaction between induced electric dipoles, and is only possible for particles with suitable polarization properties. Smectite clay colloids are observed to be particularly suitable, in contrast to similar suspensions of a non-swelling clay. Synchrotron X-ray scattering experiments provide the orientation distributions for the particles. These distributions are understood in terms of competing (i) homogenizing entropy and (ii) interaction between the particles and the local electric field; they show that clay particles polarize along their silica sheet. Furthermore, a change in the platelet separation inside nano-layered particles occurs under application of the electric field, indicating that intercalated ions and water molecules play a role in their electric polarization. The resulting induced dipole is structurally attached to the particle, and this causes particles to reorient and interact, resulting in the observed macroscopic structuring. The macroscopic properties of these electro-rheological smectite suspensions may be tuned by controlling the nature and quantity of the intercalated species, at the nanoscale.Comment: 7 pages, 5 figure

    On polynomial solutions of Heun equation

    Full text link
    By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, - \s/x, is also amenable for polynomial solutions.Comment: 4 pages, No figur
    • …
    corecore