361 research outputs found
Multi-Sideband RABBIT in Argon
We report a joint experimental and theoretical study of a three-sideband
(3-SB) modification of the "reconstruction of attosecond beating by
interference of two-photon transitions" (RABBIT) setup. The 3-SB RABBIT scheme
makes it possible to investigate phases resulting from interference between
transitions of different orders in the continuum. Furthermore, the strength of
this method is its ability to focus on the atomic phases only, independent of a
chirp in the harmonics, by comparing the RABBIT phases extracted from specific
SB groups formed by two adjacent harmonics. We verify earlier predictions that
the phases and the corresponding time delays in the three SBs extracted from
angle-integrated measurements become similar with increasing photon electron
energy. A variation in the angle dependence of the RABBIT phases in the three
SBs results from the distinct Wigner and continuum-continuum coupling phases
associated with the individual angular momentum channels. A qualitative
explanation of this dependence is attempted by invoking a propensity rule.
Comparison between the experimental data and predictions from an R-matrix
(close-coupling) with time dependence calculation shows qualitative agreement
in the observed trends.Comment: 8 pages, 5 figure
Penning ionization of doped helium nanodroplets following EUV excitation
Helium nanodroplets are widely used as a cold, weakly interacting matrix for
spectroscopy of embedded species. In this work we excite or ionize doped He
droplets using synchrotron radiation and study the effect onto the dopant atoms
depending on their location inside the droplets (rare gases) or outside at the
droplet surface (alkali metals). Using photoelectron-photoion coincidence
imaging spectroscopy at variable photon energies (20-25 eV), we compare the
rates of charge-transfer to Penning ionization of the dopants in the two cases.
The surprising finding is that alkali metals, in contrast to the rare gases,
are efficiently Penning ionized upon excitation of the (n=2)-bands of the host
droplets. This indicates rapid migration of the excitation to the droplet
surface, followed by relaxation, and eventually energy transfer to the alkali
dopants
EUV ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization and electron energy-loss spectra
The ionization dynamics of pure He nanodroplets irradiated by EUV radiation
is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence
(VMI-PEPICO) spectroscopy. We present photoelectron energy spectra and angular
distributions measured in coincidence with the most abundant ions He+, He2+,
and He3+. Surprisingly, below the autoionization threshold of He droplets we
find indications for multiple excitation and subsequent ionization of the
droplets by a Penning-like process. At high photon energies we evidence
inelastic collisions of photoelectrons with the surrounding He atoms in the
droplets
Single ionization of atoms in intense laser pulses: Evolution from multiphoton to tunnel ionization
We present results of high resolution fully differential measurements on single ionization of He, Ne, and Ar by 7-25 fs linearly polarized 800nm laser pulses at intensities of up to 2.1015 W/cm2. Using a 'Reaction-Microscope' we were able to trace signatures of multiphoton ionization deep into the tunnelling regime. Surprisingly, in the low-energy electron spectra we observed several features (absence of the ponderomotive shifts, splitting of the peaks, their degeneration for few-cycle laser pulses) typical for resonantly-enhanced ionization. Other remarkable features, as the sharp cusp-like momentum distributions in the direction perpendicular to the laser field or the observed minima at zero longitudinal momentum for He and Ne, can be reproduced by semiclassical models, where the electron motion in the combined laser and Coulomb field is treated classically after the tunnelling
Multi-sideband interference structures by high-order photon-induced continuum-continuum transitions in helium
Following up on a previous paper on two-color photoionization of Ar(3p)
[Bharti et al., Phys. Rev. A 103 (2021) 022834], we present measurements and
calculations for a modified three-sideband (3-SB) version of the
"reconstruction of attosecond beating by interference of two-photon
transitions" (RABBITT) configuration applied to He(1s). The 3-SB RABBITT
approach allows us to explore interference effects between pathways involving
different orders of transitions within the continuum. The relative differences
in the retrieved oscillation phases of the three sidebands provide insights
into the continuum-continuum transitions. The ground state of helium has zero
orbital angular momentum, which simplifies the analysis of oscillation phases
and their angle-dependence within the three sidebands. We find qualitative
agreement between our experimental results and the theoretical predictions for
many cases but also observe some significant quantitative discrepancies.Comment: 9 pages, 6 figure
Time-Resolved Measurement of Interatomic Coulombic Decay in Ne_2
The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al.,
Phys. Rev. Lett. 79, 4778 (1997)] in Ne_2 is determined via an extreme
ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The
pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms,
whereupon the ionized dimer undergoes ICD resulting in a repulsive
Ne^{+}(2p^{-1}) - Ne^{+}(2p^{-1}) state, which is probed with a second pulse,
removing a further electron. The yield of coincident Ne^{+} - Ne^{2+} pairs is
recorded as a function of the pump-probe delay, allowing us to deduce the ICD
lifetime of the Ne_{2}^{+}(2s^{-1}) state to be (150 +/- 50) fs in agreement
with quantum calculations.Comment: 5 pages, 3 figures, accepted by PRL on July 11th, 201
Non-sequential triple ionization in strong fields
We consider the final stage of triple ionization of atoms in a strong
linearly polarized laser field. We propose that for intensities below the
saturation value for triple ionization the process is dominated by the
simultaneous escape of three electrons from a highly excited intermediate
complex. We identify within a classical model two pathways to triple
ionization, one with a triangular configuration of electrons and one with a
more linear one. Both are saddles in phase space. A stability analysis
indicates that the triangular configuration has the larger cross sections and
should be the dominant one. Trajectory simulations within the dominant symmetry
subspace reproduce the experimentally observed distribution of ion momenta
parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Pathways to double ionization of atoms in strong fields
We discuss the final stages of double ionization of atoms in a strong
linearly polarized laser field within a classical model. We propose that all
trajectories leading to non-sequential double ionization pass close to a saddle
in phase space which we identify and characterize. The saddle lies in a two
degree of freedom subspace of symmetrically escaping electrons. The
distribution of longitudinal momenta of ions as calculated within the subspace
shows the double hump structure observed in experiments. Including a symmetric
bending mode of the electrons allows us to reproduce the transverse ion
momenta. We discuss also a path to sequential ionization and show that it does
not lead to the observed momentum distributions.Comment: 10 pages, 10 figures; fig.6 and 7 exchanged in the final version
accepted for publication in Phys. Rev.
Photon-Photon and Photon-Hadron Interactions at Relativistic Heavy Ion Colliders
In central collisions at relativistic heavy ion colliders like the
Relativistic Heavy Ion Collider RHIC/Brookhaven and the Large Hadron Collider
LHC (in its heavy ion mode) at CERN/Geneva, one aims at detecting a new form of
hadronic matter --- the Quark Gluon Plasma. We discuss here a complementary
aspect of these collisions, the very peripheral ones. Due to coherence, there
are strong electromagnetic fields of short duration in such collisions. They
give rise to photon-photon and photon-nucleus collisions with high flux up to
an invariant mass region hitherto unexplored experimentally. After a general
survey photon-photon luminosities in relativistic heavy ion collisions are
discussed. Then photon-photon physics at various gamma-gamma-invariant mass
scales is discussed. The region of several GeV, relevant for RHIC is dominated
by QCD phenomena (meson and vector meson pair production). Invariant masses of
up to about 100 GeV can be reached at LHC, and the potential for new physics is
discussed. Lepton-pair production, especially electron-positron pair production
is copious. Due to the strong fields there will be new phenomena, especially
multiple e+e- pair production.Comment: 10 pages, Proceedings of the Erice Summer School on Heavy Ion Physics
199
- …